Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Recent interest in orbital angular momentum has led to a rapid expansion of research on spin-orbit coupling effects in solids, while also highlighting significant technical challenges. The breaking of rotational symmetry renders the orbital angular momentum operator ill defined, causing conceptual and computational issues in describing orbital motion. To address these issues, here we propose an alternative framework. Based on the Bloch representation of the full relativistic interaction, we derive a field that directly couples to electron spins while preserving discrete translational symmetry, thereby eliminating the need for the position operator. Our approach is fully compatible with existing first-principles computational frameworks for both static and time-dependent density functional theory. We demonstrate that this method offers a more effective description of the Edelstein and spin Hall effects compared to conventional orbital angular momentum formalisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/q46t-hck1 | DOI Listing |