Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Lysosomes are the key organelles in regulating cellular homeostasis, posing a significant role from basic enzyme trafficking to cell death. Existing fluorescent probes for imaging of lysosomes have limitations, such as tumor-associated false positives due to pH-dependent retention and single-channel emission properties restricting their use to either cellular or imaging. Real-time and high-fidelity visualization of lysosomal changes during ferroptosis both at cells and the tumor level presents a big challenge. To overcome these challenges, we developed , a glutathione (GSH)-activatable, lipophilic, visible/NIR-II dual-channel emission probe. It integrates (an anionic cyanine with NIR-II emission) and (a naphthalimide derivative with visible emission) via a GSH-responsive linker. Leveraging the high intracellular GSH concentration, upon GSH activation, hydrophilic and proton-combinable products and are released, enabling long-term lysosomal retention (over 24 h in cells and up to 15 days in tumor-bearing mice). Benefiting from the lysosome retention effect, we further achieved visible/NIR-II dual-channel longitudinal monitoring of lysosomal changes during erastin-induced ferroptosis, from cellular-level confocal to NIR-II imaging, revealing significant lysosomal destruction. This cross-scale functionality of greatly bridges cellular dynamics to organismal outcomes, addressing a long-standing gap in lysosomal research tools.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.5c02897 | DOI Listing |