A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Mutations in GFAP Alter Early Lineage Commitment of Organoids. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Glial fibrillary acidic protein (GFAP) is a type-3 intermediate filament protein mainly expressed in astrocytes in the central nervous system. Mutations in GFAP cause Alexander disease (AxD), a rare and fatal neurological disorder. How exactly mutant GFAP eventually leads to white and gray matter deterioration in AxD remains unknown. GFAP is known to be expressed also in neural precursor cells in the developing brain. Here, we used AxD patient-derived induced pluripotent stem cells (iPSCs) to explore the impact of mutant GFAP during neurodifferentiation. Our results show that GFAP is already expressed in iPSCs. Moreover, we have found that mutations in GFAP can severely affect neural organoid development through altering lineage commitment in embryoid bodies. Together, these results support the notion that GFAP plays a role as an early modulator of neurodevelopment.

Download full-text PDF

Source
http://dx.doi.org/10.1002/glia.70049DOI Listing

Publication Analysis

Top Keywords

mutations gfap
12
lineage commitment
8
gfap
8
mutant gfap
8
gfap expressed
8
gfap alter
4
alter early
4
early lineage
4
commitment organoids
4
organoids glial
4

Similar Publications