Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Controlling regio- and chemo-selectivity in transition-metal-catalyzed reactions involving coupling reagents with multiple reactive sites remains a significant challenge. In this study, a dual-ligand strategy is introduced to orthogonally regulate both nucleophilic and electrophilic sites in the rhodium-catalyzed sequential hydrofunctionalization of valylene. Leveraging the synergistic effects of bidentate and monodentate phosphine ligands, cyclic prenylation of 4-hydroxycoumarins is achieved with outstanding regio- and chemo-selectivity under basic conditions. Conversely, structurally reversed prenylation is selectively obtained using a dppb (1,4-bis(diphenylphosphino)butane)/DME (1,2-dimethoxyethane) ligand combination under acidic conditions. This efficient and versatile protocol is also applicable to pyrazol-5-one substrates, yielding high-value dihydropyrano[2,3-c]pyrazole analogs. Mechanistic studies suggest that the cyclic prenylation proceeds via C3- or O-propargylation, followed by Rh- or acid-promoted intermolecular annulation. It is hoped that this strategy will provide valuable insights for addressing selectivity challenges in transition-metal catalysis and inspire further developments in this field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/advs.202511331 | DOI Listing |