Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We investigate quantum entanglement in two-spin-1/2 NMR systems at thermal equilibrium under external magnetic fields. We derive closed-form analytical expressions for the entanglement of the system and show how the entanglement depends on temperature and magnetic field strength, resulting in a threshold temperature beyond which entanglement vanishes. We demonstrate that at zero temperature, the system exhibits a quantum critical point, characterized by non-analytic behavior in the measure of entanglement. We further develop analytical criterion for level crossing, which serves as a condition for identifying quantum critical points in both homonuclear and heteronuclear systems, and apply it to multiple settings to analyze their quantum critical points. We establish a direct link between the quantum entanglement quantifier and experimentally accessible NMR observables, enabling entanglement to be quantified through NMR signal processing. This provides a practical framework for characterizing quantum correlations using standard NMR experiments. These findings provide insights into the thermal control of quantum features, with implications for quantum-enhanced NMR, low-temperature spectroscopy, and emerging quantum technologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d5cp02597d | DOI Listing |