Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The realization of high-precision target positioning requires the systematic suppression of nonlinear perturbations in the UAV optoelectronic system and the optimization of the cumulative deviation of coordinate transformations through error transfer modeling. This study proposes an error allocation method based on the improved raccoon optimization algorithm (KYCOA) to resolve the problem of degradation of positioning accuracy due to multi-source error coupling during UAV target positioning. Firstly, a multi-coordinate system transformation model is established to analyze the nonlinear transfer characteristics of the error, and the Taylor expansion is used to linearize the error transfer process and derive the synthetic error model under the geocentric coordinate system. Secondly, the KYCOA is proposed to optimize the error allocation by combining the good point set initialization strategy to enhance the population diversity, and the golden sine algorithm to improve the position updating mechanism in response to the defect of the traditional optimization algorithm, which easily falls into the local optimum. Simulation experiments show that the positioning error distance of the KYCOA is reduced by 66.75%, 41.89%, and 62.06% when compared with that of the original Coati Optimization Algorithm (COA), Grey Wolf Optimizer (GWO), and Whale Optimization Algorithm (WOA), respectively. In the real flight test, the target point localization error of the KYCOA is reduced by more than 40% on average when compared with that of other algorithms, which verifies the effectiveness of the proposed method in improving the target localization accuracy and robustness of UAVs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12299884 | PMC |
http://dx.doi.org/10.3390/s25144340 | DOI Listing |