Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
This paper investigates the use of AlO nano-powder-stirred micro-EDM process for generating micro-channels. This study focuses on the effect of critical machining process parameters, such as capacitance levels and nano-powder concentration, on the micro-channel fabrication performance in terms of TWR, MRR, depth, and width. A two-stage nested ANOVA is employed to understand the effect of powder concentration within different capacitance levels. The results show that the powder concentration significantly influences the system's performance in conjunction with the capacitance. At low (100 pF) and high (1000 pF) capacitance, the addition of AlO nano-powder increases the MRR, depth, and width but decreases TWR up to a concentration of 1.0 g/L. A desirability function analysis (DFA) tool identified the best overall performance from 14 experiments, revealing that 100 pF and 1 g/L yield the optimal outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12299606 | PMC |
http://dx.doi.org/10.3390/mi16070725 | DOI Listing |