Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

NAC (NAM, ATAF1/2, CUC1/2) is a plant-specific transcription factor (TF) family that plays important roles in various physiological and biochemical processes of plants. However, the gene family in and its role in anthocyanin metabolism are still unexplored. In our study, a total of 167 were identified in the genome via genome-wide analysis and bioinformatics techniques. Amino acid sequence analysis showed that all 167 NAC proteins contained a conserved NAM domain. This domain primarily comprised random coils, extended strands, and alpha helices. Most were found on the nucleus and dispersed over 23 of the 24 plant chromosomes. Based on phylogenetic analysis, the can be categorized into ten subgroups. Furthermore, the promoter homeotropic elements predicted the cis-acting elements in the promoters of these genes related to hormones, development, environmental stress response, and other related responses, demonstrating the diverse regulatory mechanisms underlying gene functions. In addition, a co-expression network was established through RNA sequencing. This network helped identify seven key , genes related to anthocyanin expression (CHS) and transcription factors (MYB and bHLH). To identify potential anthocyanin regulatory factors present in petals, protein interaction prediction was performed, which revealed that LiNACs might participate in anthocyanin regulation by interacting with other proteins, such as MYB, ABF, ABI, bZIP, MYC, etc. Our results provided novel insights and could help in the functional identification of in and the regulation of anthocyanin synthesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12293354PMC
http://dx.doi.org/10.3390/cimb47070542DOI Listing

Publication Analysis

Top Keywords

gene family
8
anthocyanin
6
family genome-wide
4
genome-wide identification
4
identification characterization
4
characterization expression
4
analysis
4
expression analysis
4
analysis key
4
key regulators
4

Similar Publications

Evidence indicates that transposable elements (TEs) can contribute to the evolution of new traits, with some TEs acting as deleterious elements while others are repurposed for beneficial roles in evolution. In mammals, some KRAB-ZNF proteins can serve as a key defense mechanism to repress TEs, offering genomic protection. Notably, the family of KRAB-ZNF genes evolves rapidly and exhibits diverse expression patterns in primate brains, where some TEs, including autonomous LINE-1 and non-autonomous Alu and SVA elements, remain mobile.

View Article and Find Full Text PDF

Characterization of the pesticidal crystal toxin protein Cry11Aa from Bacillus thuringiensis serovar israelensis VCRC B646 for mosquito larvae control.

Biotechnol Lett

September 2025

Unit of Microbiology and Immunology, Vector Control Research Centre, Indian Council of Medical Research, Department of Health Research, Ministry of Health and Family Welfare, Puducherry, 605006, India.

Effective mosquito control is essential for reducing the transmission of vector-borne diseases. This study focuses on the comprehensive characterization of mosquitocidal toxins produced by Bacillus thuringiensis serovar israelensis (Bti) VCRC B646 and the associated insecticidal genes. The bacterium was cultured, and the spore-crystal complex was purified to identify the mosquitocidal proteins.

View Article and Find Full Text PDF

Genetic variants in HSP40 co-chaperones modulate ischemic heart disease risk.

Mol Biol Rep

September 2025

Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, 305041, Russia.

Background: The chaperoning system, which is responsible for protein homeostasis, plays a significant role in cardiovascular diseases. Among molecular chaperones or heat shock proteins (HSPs), the HSP40 family, the main co-chaperone of HSP70, remains largely underexplored, especially in ischemic heart disease (IHD) risk.

Materials And Results: We genotyped 834 IHD patients and 1,328 healthy controls for three SNPs (rs2034598 and rs7189628 DNAJA2 and rs4926222 DNAJB1) using probe-based real-time PCR.

View Article and Find Full Text PDF

Pseudoduganella rhizocola sp. nov., Isolated from Rhizospheric Soil.

Curr Microbiol

September 2025

Department of Integrative Biotechnology, Sungkyunkwan University, Natural Science Campus, 2066 Seobu-ro, Jangan-Gu, Suwon-Si, Gyeonggi-Do, 16419, Republic of Korea.

A novel bacterial strain, SM-13 was isolated from the rhizospheric soil of Epipremnum aureum (Jade Pothos) sampled in Suwon, Republic of Korea. The isolate was Gram-stain-negative, aerobic, motile, rod-shaped, cream-coloured, oxidase- and catalase-positive. Strain SM-13 grew at the range of 15-37 °C (optimum, 25 °C), at pH 6.

View Article and Find Full Text PDF

Adolescents and young adults with chronic kidney disease (CKD), particularly those with genetic kidney diseases, face unique challenges as they transition from pediatric to adult nephrology care. This period is marked not only by changes in healthcare providers but also by significant developmental, psychosocial, and medical complexities. In response, the ERA Working Group on Genes and Kidney and the ESPN Working Group on Inherited Kidney Diseases have collaborated to develop practical advice for healthcare professionals involved in transition care across Europe and beyond.

View Article and Find Full Text PDF