A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Autoreactive immunoglobulin G levels and Fc receptor γ subunit upregulation drive mechanical allodynia after nerve constriction or crush injury. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

B cells contribute to the development of pain after sciatic nerve chronic constriction injury (CCI) through binding of immunoglobulin G (IgG) to Fc gamma receptors (FcγRs) in the lumbar dorsal root ganglia (DRG) and spinal cord. Yet the contribution of B cells to pain after different types of peripheral nerve injury is uncertain. Using male and female mice, we demonstrate a divergent role for B cell-IgG-FcγR signaling underlying mechanical allodynia between CCI, nerve crush (NC), spared nerve injury (SNI), and spinal nerve ligation (SNL). Depletion (monoclonal anti-CD20) or genetic deletion (muMT mice) of B cells prevented development of allodynia after NC and CCI, but not SNI or SNL. In apparent contradiction, circulating levels of autoreactive IgG and circulating immune complexes were increased in all models, although more prominent after NC and CCI. Passive transfer of IgG from SNI donor mice induced allodynia in CCI muMT recipient mice, demonstrating that IgG secreted after SNI is pronociceptive. To investigate why pronociceptive IgG did not contribute to mechanical allodynia after SNI, we evaluated the levels of the Fc receptor γ subunit. Spared nerve injury or spinal nerve ligation did not increase γ subunit levels in the DRG and spinal cord, whereas CCI and NC did, in agreement with B cell-dependent allodynia in these models. Together, the results suggest that traumatic peripheral nerve injury drives secretion of autoreactive IgG from B cells. However, levels of cognate FcγRs are increased after sciatic nerve constriction and crush, but not transection, nerve injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12313113PMC
http://dx.doi.org/10.1097/j.pain.0000000000003734DOI Listing

Publication Analysis

Top Keywords

nerve injury
20
mechanical allodynia
12
allodynia cci
12
nerve
11
levels receptor
8
receptor subunit
8
nerve constriction
8
constriction crush
8
sciatic nerve
8
drg spinal
8

Similar Publications