98%
921
2 minutes
20
Incorporating biological molecular interactions into cognitive computing through chemical artificial intelligence (AI) presents a transformative approach with far-reaching implications for various fields, such as protein engineering, drug discovery, bioinformatics, synthetic biology, and unconventional computing. Cognitive computing, designed to emulate human thought processes and enhance decision-making, utilizes technologies, such as machine learning, natural language processing, and speech recognition for better human-system interactions. Despite advancements, the integration of biological processes with cognitive computing remains fraught with challenges, particularly due to the complexity and scale of biological data. Here, we explore the possible benefits of connecting cognitive computing with biological knowledge, including more precise models of protein interactions, gene regulation, and metabolic pathways, which could lead to personalized treatments and early disease detection. Furthermore, we discuss the intersection of cognitive computing and biophysical research techniques, examining how analogies from neuroscience-like synaptic communication and neural plasticity-can inform the development of neuromorphic chips and enhance predictive models. Additionally, the study delves into intrinsically disordered proteins (IDPs) and their crucial roles in brain function and information processing. These insights are pivotal for advancing neuroinformatics and creating more adaptive, context-aware cognitive computing algorithms. By leveraging biophysical investigations and the unique properties of IDPs, the research aims to bridge the gap between the biological processes and their computational analogs, proposing novel methods, such as chemical AI implemented in liquid solutions as promising avenues for future advancements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12290163 | PMC |
http://dx.doi.org/10.1007/s12551-025-01286-x | DOI Listing |
Behav Res Methods
September 2025
Laboratoire de Psychologie, Université de Bordeaux, LabPsy UR 4139, 3 Place de la Victoire, 33076, Bordeaux Cedex, France.
This article presents a new set of semantic feature production norms, collected from 580 young adults, for 360 French concepts across various semantic categories. Although empirically derived feature norms have been developed for several languages and have been shown to be useful for investigating semantic memory and providing assessment tools, none are currently available for native French-speaking populations. In this study, the participants performed a property generation task in which they were asked to list features to describe the characteristics of each given concept (e.
View Article and Find Full Text PDFNature
September 2025
Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.
Loss-of-function variants in the lipid transporter ABCA7 substantially increase the risk of Alzheimer's disease, yet how they impact cellular states to drive disease remains unclear. Here, using single-nucleus RNA-sequencing analysis of human brain samples, we identified widespread gene expression changes across multiple neural cell types associated with rare ABCA7 loss-of-function variants. Excitatory neurons, which expressed the highest levels of ABCA7, showed disrupted lipid metabolism, mitochondrial function, DNA repair and synaptic signalling pathways.
View Article and Find Full Text PDFJ Neurosci
September 2025
Psychiatry, University of Minnesota, Minneapolis, Minnesota 55455
Deep brain stimulation (DBS) is an emerging treatment for otherwise treatment-refractory psychiatric disorders. It can produce remarkable clinical results in expert hands, but has not fared as well in controlled, multisite trials. That difficulty with scaling up arises in part because DBS' mechanisms are poorly understood, meaning that it is difficult to objectively identify patients likely to respond and/or to customize stimulation to match individual patients' needs.
View Article and Find Full Text PDFJ Neurosci
September 2025
Department of Bioengineering, George Mason University, Fairfax, VA, United States,
In the hippocampal formation, cholinergic modulation from the medial septum/diagonal band of Broca (MSDB) is known to correlate with the speed of an animal's movements at sub-second timescales and also supports spatial memory formation. Yet, the extent to which sub-second cholinergic dynamics, if at all, align with transient behavioral and cognitive states supporting the encoding of novel spatial information remains unknown. In this study, we used fiber photometry to record the temporal dynamics in the population activity of septo-hippocampal cholinergic neurons at sub-second resolution during a hippocampus-dependent object location memory task using ChAT-Cre mice of both sexes.
View Article and Find Full Text PDFBiol Psychiatry
September 2025
Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029 USA; Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10027 USA; The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029 USA; Nash Fami
Background: As we navigate changing social landscapes, maintaining maps of interpersonal dynamics can help guide our choices. Autism spectrum disorder (ASD) is associated with social challenges that may affect the accumulation or application of social information. However, little is known about social cognitive mapping in autistic adults.
View Article and Find Full Text PDF