A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Current status and challenges of multi-omics research using animal models of atherosclerosis. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Atherosclerosis is an underlying cause of cardiovascular diseases (CVD) which account for most deaths worldwide. Use of diverse preclinical models of atherosclerosis has been implemental in understanding the underlying mechanisms, the implicated cell types, the genes and the molecules at play in the onset and progression of atherosclerotic plaques. Although significant research advancements have been made, further research is necessary to delve into factors influencing plaque types, site preference within the vasculature, interactions with adjacent tissues (liver, pancreas and perivascular adipose tissue), inflammation and sex-based disparities, among others. The conventional low throughput methodologies which concentrate on individual cells, genes or metabolites are inadequate to tackle the complex and heterogeneous nature of atherosclerosis. With recent advancement in multi-omics and bioinformatics, research approaches have illuminated a clearer understanding of atherosclerosis. Consequently, these advancements pave the path to design novel therapeutics to complement currently approved lipid-lowering and other effective treatments. In this article, we summarize and critically evaluate the findings derived from recent high throughput single- or multi-omic studies conducted in animal models of atherosclerosis. We also delve into the challenges associated with using experimental animals to model human atherosclerosis and contemplate the essential enhancements needed to better mimic human conditions. We further discuss the requirement of establishing a structured multi-omic database for atherosclerosis research, enabling broader access and utilisation within the scientific community.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12301843PMC
http://dx.doi.org/10.1016/j.jmccpl.2025.100476DOI Listing

Publication Analysis

Top Keywords

models atherosclerosis
12
animal models
8
atherosclerosis
8
current status
4
status challenges
4
challenges multi-omics
4
multi-omics animal
4
atherosclerosis atherosclerosis
4
atherosclerosis underlying
4
underlying cardiovascular
4

Similar Publications