Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Kleptoplastidy is a nutrition mode in which cells of protists and some multicellular organisms acquire, maintain, and exploit chloroplasts of prey algae cells as photosynthesis reactors. It is an important aspect of the mixotrophic feeding strategy, which plays a role in the formation of harmful algae blooms (HABs). We developed a new mathematical model, in which kleptoplastidy is regarded as a mechanism of enhancing mixotrophy of protists. The model is constructed using three thought (theoretical) experiments and the concept of biological time. We propose to measure the contribution of kleptoplastidy to mixotrophy using a new ecological indicator: the kleptoplastidy index. This index is a function of two dimensionless variables, one representing the ratio of photosynthetic production of acquired chloroplasts versus native chloroplasts, and the other representing the balance between autotrophic and heterotrophic feeding modes. The index is tested by data for the globally distributed, bloom-forming potentially toxic mixotrophic dinoflagellates . The model supports our hypothesis that kleptoplastidy can increase the division rate of algae significantly (by 40%), thus boosting their population growth and promoting blooms. The proposed model can contribute to advancements in ecological modeling aimed at forecasting and management of HABs that deteriorate marine coastal environments worldwide.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12292548 | PMC |
http://dx.doi.org/10.3390/biology14070900 | DOI Listing |