Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background/objectives: We showed that a tailored strengthening intervention based on the size of motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) in the affected hemisphere resulted in an improved affected arm function, regardless of stroke severity. Also, adding anodal transcranial direct stimulation (atDCS) during training did not alter the results as participants receiving real or sham stimulation showed similar gains. The goal of this study was to report on the changes in basic measures of corticomotor excitability in response to the intervention and to determine whether these changes were influenced by tDCS and correlated with those measured in arm function.
Methods: The TMS measures consisted of the resting motor threshold (rMT), MEP amplitude at rest, and the silent period (SP) duration. Clinical outcomes included the Box and Block test (BBT) and grip strength (GS).
Results: Post-intervention, regardless of atDCS ( > 0.62), no significant change in corticomotor excitability was noted ( > 0.15), as well as no association between the changes in TMS measures and arm function gains ( > 0.06).
Conclusions: As observed for clinical measures, atDCS did not influence corticomotor excitability. The absence of an increase in the excitability of the affected hemisphere and important associations between changes in corticomotor excitability and clinical gains suggest that factors other than brain plasticity could mediate gains in arm function. Further investigations are required regarding the role of tDCS in stroke rehabilitation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12293626 | PMC |
http://dx.doi.org/10.3390/brainsci15070700 | DOI Listing |