Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sprouting angiogenesis is a form of morphogenesis which expands vascular networks from preexisting networks. However, the precise mechanism governing efficient branch elongation driven by directional movement of endothelial cells (ECs), while the lumen develops under the influence of blood inflow, remains unknown. Herein, we show perivascular stiffening to be a major factor that integrates branch elongation and lumen development. The lumen expansion seen during lumen development inhibits directional EC movement driving branch elongation. This process is counter-regulated by the presence of pericytes, which induces perivascular stiffening by promoting the deposition of EC-derived collagen-IV (Col-IV) on the vascular basement membrane (VBM), thereby preventing excessive lumen expansion. Furthermore, inhibition of forward directional movement of the tip EC during lumen development is associated with decreased localization of the F-BAR proteins and Arp2/3 complexes at the leading front. Our results demonstrate how ECs elongate branches, while the lumen develops, by properly building the surrounding physical environment in coordination with pericytes during angiogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12304211PMC
http://dx.doi.org/10.1038/s41467-025-61804-zDOI Listing

Publication Analysis

Top Keywords

branch elongation
12
directional movement
12
lumen development
12
lumen develops
8
perivascular stiffening
8
lumen expansion
8
lumen
7
biomechanical control
4
control vascular
4
vascular morphogenesis
4

Similar Publications

Vertebrobasilar dolichoectasia (VBD) is a vascular anomaly marked by abnormal elongation and dilation of the vertebral and basilar arteries. Often, VBD remains undiagnosed or is discovered incidentally during evaluations of vascular events such as ischemia, hemorrhage, hydrocephalus, or cranial nerve palsies. While most patients are managed conservatively, treatment choices are highly individualized based on clinical presentation, vessel characteristics, and risk factors.

View Article and Find Full Text PDF

Ionization of alkanes to form radical cations activates their otherwise unreactive C-H bonds, facilitating important chemical processes such as hydrocarbon cracking. This work investigates the radical cation dissociation dynamics of hexane (CH) structural isomers by using femtosecond time-resolved mass spectrometry and quantum chemical calculations. All five isomers exhibit competition between the yields of fragment ions arising from direct C-C bond cleavage or dissociative rearrangement with hydrogen migration on dynamical time scales of ∼50-300 fs, suggesting that hydrogen migration in the metastable cations operates on such short time scales.

View Article and Find Full Text PDF

Sustainable bio-based film based on chitosan resin crosslinking with tannin, phytic acid and octadecylamine for food packaging application.

Int J Biol Macromol

September 2025

Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, People's Republic of China. Electronic address:

Chitosan and tannin are both promising renewable materials for food packaging; however, their effectiveness is limited by incomplete interactions between them. Therefore, phytic acid and octadecylamine were employed to create chitosan-tannin-phytic acid-octadecylamine (CTPO) films that are flame-retardant, UV-resistant, antibacterial and hydrophobic for food packaging applications. The findings indicate that the CTPO film exhibited excellent hydrophobicity and mechanical properties, with a water contact angle of 133.

View Article and Find Full Text PDF

Forms of chitin-polysaccharide cross-linking in the Coprinopsis cinerea stipe cell wall.

Carbohydr Polym

November 2025

Jiangsu Key Laboratory for pathogens and ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China. Electronic address:

The fungal cell wall provides the cell with enough strength to withstand turgor pressure and keeps adequate plasticity to extend the cell wall size under turgor pressure for cell growth. The cell walls of apical growing hyphae and budding growth yeast have been studied in detailed which share common components of chitin and β-1,3-glucan in their scaffold structures while other polysaccharide components vary on species. In contrast, the cell walls of elongating growth mushroom stipe remains poorly studied.

View Article and Find Full Text PDF

Kryptoperidinium belongs to a group of dinophytes hosting a diatom as an endosymbiont and is currently considered to comprise a single, putatively bloom-forming and harmful species only. Molecular phylogenetics indicate the existence of a second distinct lineage and therefore species new to science, which we here formally describe as Kryptoperidinium secundum sp. nov.

View Article and Find Full Text PDF