A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Impact of a Lower Limb Exosuit Anchor Points on Energetics and Biomechanics. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Anchor point placement is a crucial yet often overlooked aspect of exosuit design since it determines how forces interact with the human body. This work analyzes the impact of different anchor point positions on gait kinematics, muscular activation and energetic consumption. A total of six experiments were conducted with 11 subjects wearing the XoSoft exosuit, which assists hip flexion in five configurations. Subjects were instrumented with an IMU-based motion tracking system, EMG sensors, and a mask to measure metabolic consumption. The results show that positioning the knee anchor point on the posterior side while keeping the hip anchor on the anterior part can reduce muscle activation in the hip flexors by up to 10.21% and metabolic expenditure by up to 18.45%. Even if the only assisted joint was the hip, all the configurations introduced changes also in the knee and ankle kinematics. Overall, no single configuration was optimal across all subjects, suggesting that a personalized approach is necessary to transmit the assistance forces optimally. These findings emphasize that anchor point position does indeed have a significant impact on exoskeleton effectiveness and efficiency. However, these optimal positions are subject-specific to the exosuit design, and there is a strong need for future work to tailor musculoskeletal models to individual characteristics and validate these results in clinical populations.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2025.3593040DOI Listing

Publication Analysis

Top Keywords

anchor point
16
exosuit design
8
anchor
6
impact lower
4
lower limb
4
exosuit
4
limb exosuit
4
exosuit anchor
4
anchor points
4
points energetics
4

Similar Publications