A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A Review of DNA Restriction-Free Overlapping Sequence Cloning Techniques for Synthetic Biology. | LitMetric

A Review of DNA Restriction-Free Overlapping Sequence Cloning Techniques for Synthetic Biology.

Biotechnol J

Laboratório de Biologia Molecular e Computacional, Centro de Biotecnologia da UFRGS, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

DNA cloning methods are fundamental tools in molecular biology, synthetic biology, and genetic engineering that enable precise DNA manipulation for various scientific and biotechnological applications. This review systematically summarizes the major restriction-free overlapping sequence cloning (RFOSC) techniques currently used in synthetic biology and examines their development, efficiency, practicality, and specific applications. In vitro methods, including Gibson Assembly, Circular Polymerase Extension Cloning (CPEC), Polymerase Incomplete Primer Extension (PIPE), Overlap Extension Cloning (OEC), Uracil DNA Glycosylase-based Cloning (UDG-Cloning), and commercially available techniques such as In-Fusion, have been discussed alongside hybrid approaches such as Ligation-Independent Cloning (LIC), Sequence-Independent Cloning (SLIC), and T5 Exonuclease-Dependent Assembly (TEDA). Additionally, in vivo methods leveraging host recombination machinery, including Yeast Homologous Recombination (YHR), In Vivo Assembly (IVA), Transformation-Associated Recombination (TAR), and innovative approaches such as Phage Enzyme-Assisted Direct Assembly (PEDA), are critically evaluated. The review highlights that method selection should consider individual research projects' scale, complexity, and specific needs, noting that no single technique is universally optimal. Future trends suggest the increased integration of enzymatic efficiency, host versatility, and automation, broadening the accessibility and capabilities of DNA assembly technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/biot.70084DOI Listing

Publication Analysis

Top Keywords

synthetic biology
12
restriction-free overlapping
8
overlapping sequence
8
cloning
8
sequence cloning
8
extension cloning
8
assembly
5
review dna
4
dna restriction-free
4
cloning techniques
4

Similar Publications