Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Type 1 diabetes (T1D) is caused by autoimmune-mediated destruction of pancreatic β-cells, resulting in insulin deficiency. While islet transplantation presents a potential therapeutic approach, its clinical application is impeded by limited donor availability and the risk of immune rejection. This study proposes an innovative islet encapsulation strategy that utilizes decellularized porcine pancreatic extracellular matrix (pECM) as the sole biomaterial to engineer bioactive, immunoprotective microcapsules. Rat islets were encapsulated within pECM-based microcapsules using the electrospray technology and were compared to conventional alginate-based microcapsules in terms of viability, function, and response to hypoxic stress. The pECM microcapsules maintained a spherical morphology, demonstrating mechanical robustness, and preserving essential ECM components (collagen I/IV, laminin, fibronectin). Encapsulated islets exhibited sustained viability and superior insulin secretion over a two-week period compared to alginate controls. The expression of key β-cell transcription factors (PDX1, MAFA) and structural integrity were preserved. Under hypoxic conditions, pECM microcapsules significantly reduced islet apoptosis, improved structural retention, and promoted functional recovery, likely due to antioxidant and ECM-derived cues inherent to the pECM. In vivo transplantation in immunocompetent mice confirmed the biocompatibility of pECM microcapsules, with minimal immune responses, stable insulin/glucagon expression, and no adverse systemic effects. These findings position pECM-based microencapsulation as a promising strategy for creating immunoprotective, bioactive niches for xenogeneic islet transplantation, with the potential to overcome current limitations in cell-based diabetes therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12295616 | PMC |
http://dx.doi.org/10.3390/gels11070517 | DOI Listing |