A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Artificial Intelligence Dystocia Algorithm (AIDA) as a Decision Support System in Transverse Fetal Head Position. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Transverse fetal head position during labor is associated with increased rates of operative deliveries and cesarean sections. Traditional assessment methods rely on digital examination, which can be inaccurate in cases of prolonged labor. Intrapartum ultrasound offers improved diagnostic capabilities, but standardized interpretation frameworks are needed. This study aimed to evaluate the significance of appropriate assessment and management of transverse fetal head position during labor, with particular emphasis on the correlation between geometric parameters and delivery outcomes. Additionally, the investigation analyzed the potential role of Artificial Intelligence Dystocia Algorithm (AIDA) as an innovative decision support system in standardizing diagnostic approaches and optimizing clinical decision-making in cases of fetal malposition. This investigation was conducted as a focused secondary analysis of data originally collected for the development and validation of the Artificial Intelligence Dystocia Algorithm (AIDA). The study examined 66 cases of transverse fetal head position from a cohort of 135 nulliparous women with prolonged second-stage labor across three Italian hospitals. Cases were stratified by Midline Angle (MLA) measurements into classic transverse (≥75°), near-transverse (70-74°), and transitional (60-69°) positions. Four geometric parameters (Angle of Progression, Head-Symphysis Distance, Midline Angle, and Asynclitism Degree) were evaluated using the AIDA classification system. The predictive capabilities of three machine learning algorithms (Support Vector Machine, Random Forest, and Multilayer Perceptron) were assessed, and delivery outcomes were analyzed. The AIDA system successfully categorized labor dystocia into five distinct classes, with strong predictive value for delivery outcomes. A clear gradient of cesarean delivery risk was observed across the spectrum of transverse positions (100%, 93.1%, and 85.7% for near-transverse, classic transverse, and transitional positions, respectively). All cases classified as AIDA Class 4 required cesarean delivery regardless of the specific MLA value. Machine learning algorithms demonstrated high predictive accuracy, with Random Forest achieving 95.5% overall accuracy across the study cohort. The presence of concurrent asynclitism with transverse position was associated with particularly high rates of cesarean delivery. Among the seven cases that achieved vaginal delivery despite transverse positioning, none belonged to the classic transverse positions group, and five (71.4%) exhibited at least one parameter classified as favorable. The integration of artificial intelligence through AIDA as a decision support system, combined with intrapartum ultrasound, offered a promising approach for objective assessment and management of transverse fetal head position. The AIDA classification system's integration of multiple geometric parameters, with particular emphasis on precise Midline Angle (MLA) measurement in degrees, provided superior predictive capability for delivery outcomes compared to qualitative position assessment alone. This multidimensional approach enabled more personalized and evidence-based management of malpositions during labor, potentially reducing unnecessary interventions while identifying cases where expectant management might be futile. Further prospective studies are needed to validate the predictive capability of this decision support system and its impact on clinical decision-making in real-time labor management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12295838PMC
http://dx.doi.org/10.3390/jimaging11070223DOI Listing

Publication Analysis

Top Keywords

transverse fetal
20
fetal head
20
head position
20
artificial intelligence
16
decision support
16
support system
16
delivery outcomes
16
intelligence dystocia
12
dystocia algorithm
12
algorithm aida
12

Similar Publications