A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A Fresh Perspective on Cyanobacterial Paralytic Shellfish Poisoning Toxins: History, Methodology, and Toxicology. | LitMetric

A Fresh Perspective on Cyanobacterial Paralytic Shellfish Poisoning Toxins: History, Methodology, and Toxicology.

Mar Drugs

Hydrology and Remote Sensing Laboratory, Agricultural Research Service, US Department of Agriculture, 10300 Baltimore Ave, Beltsville, MD 20705, USA.

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Paralytic shellfish poisoning toxins (PSPTs) are a class of neurotoxins most known for causing illness from consuming contaminated shellfish. These toxins are also present in freshwater systems with the concern that they contaminate drinking and recreational waters. This review provides (1) a complete list of the 84+ known PSPTs and important chemical features; (2) a complete list of all environmental freshwater PSPT detections; (3) an outline of the certified PSPT methods and their inherent weaknesses; and (4) a discussion of PSPT toxicology, the weaknesses in existing data, and existing freshwater regulatory limits. We show ample evidence of production of freshwater PSPTs by cyanobacteria worldwide, but data and method uncertainties limit a proper risk assessment. One impediment is the poor understanding of freshwater PSPT profiles and lack of commercially available standards needed to identify and quantify freshwater PSPTs. Further constraints are the limitations of toxicological data derived from human and animal model exposures. Unassessed mouse toxicity data from 1978 allowed us to calculate and propose toxicity equivalency factors (TEF) for 11-hydroxysaxitoxin (11-OH STX; M2) and 11-OH dcSTX (dcM2). TEFs for the 11-OH STX epimers were calculated to be 0.4 and 0.6 for 11α-OH STX (M2α) and 11β-OH STX (M2β), while we estimate that TEFs for 11α-OH dcSTX (dcM2α) and 11β-OH dcSTX (dcM2β) congeners would be 0.16 and 0.23, respectively. Future needs for freshwater PSPTs include increasing the number of reference materials for environmental detection and toxicity evaluation, developing a better understanding of PSPT profiles and important environmental drivers, incorporating safety factors into exposure guidelines, and evaluating the accuracy of the established no-observed-adverse-effect level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12301064PMC
http://dx.doi.org/10.3390/md23070271DOI Listing

Publication Analysis

Top Keywords

freshwater pspts
12
paralytic shellfish
8
shellfish poisoning
8
poisoning toxins
8
complete list
8
freshwater pspt
8
pspt profiles
8
11-oh stx
8
freshwater
7
pspts
5

Similar Publications