Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Stochastic Petri Nets (SPNs) are an increasingly popular tool of choice for modeling discrete-event dynamics in areas such as epidemiology and systems biology, yet their parameter estimation remains challenging in general and in particular when transition rates depend on external covariates and explicit likelihoods are unavailable. We introduce a neural-surrogate (neural-network-based approximation of the posterior distribution) framework that predicts the coefficients of known covariate-dependent rate functions directly from noisy, partially observed token trajectories. Our model employs a lightweight 1D Convolutional Residual Network trained end-to-end on Gillespie-simulated SPN realizations, learning to invert system dynamics under realistic conditions of event dropout. During inference, Monte Carlo dropout provides calibrated uncertainty bounds together with point estimates. On synthetic SPNs with 20% missing events, our surrogate recovers rate-function coefficients with an RMSE = 0.108 and substantially runs faster than traditional Bayesian approaches. These results demonstrate that data-driven, likelihood-free surrogates can enable accurate, robust, and real-time parameter recovery in complex, partially observed discrete-event systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12288651 | PMC |