Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Oceanic islands are globally recognised for their exceptional levels of biodiversity and endemism, often resulting from unique evolutionary processes in isolated environments. However, this biodiversity is also disproportionately threatened by anthropogenic pressures including habitat loss, invasive species and climate change. Targeted, long-term biodiversity monitoring is essential for detecting changes in these vulnerable ecosystems and providing information for conservation strategies.The EU BIODIVERSA + project BioMonI aims at building a global long-term monitoring network specifically tailored to the pressing needs of biodiversity conservation and monitoring on islands. In BioMonI, we use a novel approach that considers mapping previous and current monitoring schemes on islands, developing a harmonised monitoring scheme for island biodiversity and mobilising existing monitoring data. We are assembling data from BioMonI-Plot, a long-term vegetation plot network to understand biodiversity and ecosystem change. It will use baseline data from three focal archipelagos (Azores, Canary Islands and Mascarenes), but we aim to mobilise data from archipelagos worldwide.Plot-based data are a cornerstone of effective biodiversity monitoring on islands. These standardised data collections within permanent plots allow for consistent, replicable observations across temporal and spatial scales. Initiatives like the Global Island Monitoring Scheme (GIMS) highlight the value of permanent plots in capturing ecological gradients and anthropogenic disturbance patterns. Such data underpin the detection of subtle shifts in community composition, functional diversity and species distributions, which are critical for assessing the effectiveness of conservation actions and predicting future ecological scenarios.In summary, plot-based data are indispensable for targeted and effective biodiversity monitoring on islands. They provide the empirical backbone necessary to provide information for adaptive management strategies and contribute to global biodiversity targets.

New Information: The BioMonI-Plot baseline data consist of 10 plots in each of the following islands: Terceira (Azores), Tenerife (Canaries) and Réunion Island (Mascarenes). As a first step, we describe the diversity and abundance of all woody species shoots with a diameter at breast height (DBH) ≥ 1 cm in each of the 10 plots of each Island. The majority of taxa belonged to the phylum Magnoliophyta, which accounted for 96.66% of the total species and subspecies, followed by Pteridophyta (2.22%) and Pinophyta (1.11%). Réunion Island exhibited the highest species richness, with 66 identified taxa, followed by Tenerife (16 taxa) and Terceira (11 taxa). Only one species, , was shared between the islands, occurring in both Terceira and Tenerife. Most of the recorded species were classified as endemic according to their colonisation status. Specifically, 32 species were endemic to the Mascarene Islands, 22 to Réunion, nine to the Azores, eleven to Macaronesia and four to the Canary Islands.The data presented in this Data Paper provide a valuable proxy for evaluating the ecological integrity and overall habitat quality of native montane forests across three oceanic archipelagos: the Azores, Canary Islands and Mascarene Islands. By focusing on tree species as primary ecological indicators, the dataset offers insights into essential structural and compositional attributes of these ecosystems, including species richness, relative abundance and patterns of dominance.The comprehensive species-level information contained in this dataset allows for comparisons of forest composition across islands and biogeographic regions, contributing to our understanding of insular forest dynamics, endemism patterns and conservation priorities in tropical and subtropical montane environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12287716PMC
http://dx.doi.org/10.3897/BDJ.13.e158423DOI Listing

Publication Analysis

Top Keywords

islands
13
biodiversity monitoring
12
monitoring islands
12
monitoring
11
data
11
biodiversity
10
species
10
biodiversa project
8
project biomoni
8
terceira tenerife
8

Similar Publications

Sustainable urban development requires actionable insights into the thermal consequences of land transformation. This study examines the impact of land use and land cover (LULC) changes on land surface temperature (LST) in Ho Chi Minh city, Vietnam, between 1998 and 2024. Using Google Earth Engine (GEE), three machine learning algorithms-random forest (RF), support vector machine (SVM), and classification and regression tree (CART)-were applied for LULC classification.

View Article and Find Full Text PDF

Eukaryotic algae-dominated microbiomes thrive on the Greenland Ice Sheet (GrIS) in harsh environmental conditions, including low temperatures, high light, and low nutrient availability. Chlorophyte algae bloom on snow, while streptophyte algae dominate bare ice surfaces. Empirical data about the cellular mechanisms responsible for their survival in these extreme conditions are scarce.

View Article and Find Full Text PDF

Petit-spot volcanism plays a critical role in the metasomatism of oceanic plates prior to subduction and in their recycling into the deep mantle. The extent of metasomatism depends on the number and volume of petit-spot volcanic edifices and intrusions, making precise identification of petit-spot volcanic fields essential. However, conventional methods based on seafloor topography and acoustic backscatter intensity alone have limitations in accurately delineating these features.

View Article and Find Full Text PDF

The maternal microbiome during pregnancy and the peripartum period plays a critical role in maternal health outcomes and establishing the neonatal gut microbiome, with long-term implications for offspring health. However, a healthy microbiome during these key periods has not been definitively characterized. This longitudinal study examines maternal and neonatal microbiomes using 16S rRNA amplicon sequencing in a Japanese cohort throughout pregnancy and the postpartum period.

View Article and Find Full Text PDF

Introduction: Pilots have an increased incidence of cutaneous melanoma compared to the general population; occupational exposure to ultraviolet (UV) radiation is one of several potential risk factors. Cockpit windshields effectively block UVB (280-315 nm) but further analysis is needed for UVA (315-400 nm). The objective of this observational study was to assess transmission of UVA through cockpit windshields and to measure doses of UVA at pilots' skin under daytime flying conditions.

View Article and Find Full Text PDF