Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Unlabelled: Xanthinurias are rare inherited disorders of purine metabolism. Xanthinuria type III is caused by molybdenum cofactor deficiency (MoCD) due to pathogenic variants in MOCS1, MOCS2, MOCS3, or GEPH genes. Here, we described five Roma patients from four unrelated families with hypouricemia, accumulation of xanthine/hypoxanthine, deficiency of xanthine oxidase activity, variable age of diagnosis, and only asymptomatic or mild clinical course. Whole exome sequencing was performed on all probands, aged 3 to 43 years, due to lack of genetic confirmation for xanthinuria types I and II. The causality of the putative pathogenic variant was confirmed by analysis of sulfite and related metabolites and in vitro functional characterization of metal-binding pterin (MPT) synthesis and protein complex formation. Considering the rarity of the condition and recessive inheritance, 34 candidate variants were identified after filtering out allele frequency threshold in non-Finnish Europeans. An ultra-rare MOCS2 variant rs776441627 in two overlapping reading frames (c.244A > T (NM_176806.4; p.Ile82Phe) = c.57A > T (NM_004531.5; p.Leu19Phe)) segregated with the disease in all five patients (four homozygotes, one compound heterozygote). The variant has an allele frequency of 3.6% in a Roma population control group. Functional characterization revealed the significantly decreased MPT synthesis activity and confirmed the causality of rs776441627 in MoCD.

Conclusion: The rs776441627 is a functional variant for MoCD with a mild to asymptomatic clinical phenotype and fully penetrant biochemical phenotype. Hypouricemia should be considered in the differential diagnostic algorithm of pediatric and adult patients with neurological symptoms, and MOCS2 should be considered in gene panels for xanthinuria screening.

What Is Known: • Xanthinuria type III is caused by molybdenum cofactor deficiency (MoCD) due to pathogenic variants in MOCS1, MOCS2, MOCS3, or GEPH genes. • The majority of patients with xanthinuria III present with classical early-onset MoCD due to autosomal recessive variants in the MOCS1 gene, manifesting severe progressive neurological complications during the first postnatal days. • To date, approximately 40 patients with MoCD due to pathogenic MOCS2 variants have been reported; most were diagnosed during the neonatal period with intractable seizures and feeding disorders.

What Is New: • A novel ultra-rare variant, rs776441627, located in two overlapping reading frames of the MOCS2, was identified in five Roma patients presenting a mild to asymptomatic clinical MoCD phenotype and a fully penetrant biochemical phenotype. • Functional studies of p.Ile82Phe (small MOCS2A subunit) and p.Leu19Phe (large MOCS2B subunit) demonstrate a strong reduction in molydopterin synthase complex formation and activity, consistent with the changes in biomarkers of MoCD observed in affected individuals. • The rs776441627 variant shows significantly elevated frequency among the Roma population, highlighting the importance of considering ethnic background in the differential diagnosis of MoCD. • Hypouricemia may provide an initial, generally available biochemical key marker indicator of molybdenum cofactor deficiency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12289762PMC
http://dx.doi.org/10.1007/s00431-025-06335-xDOI Listing

Publication Analysis

Top Keywords

molybdenum cofactor
16
cofactor deficiency
16
roma population
12
mocd pathogenic
12
variants mocs1
12
mocs2 variant
8
xanthinuria type
8
type iii
8
iii caused
8
caused molybdenum
8

Similar Publications

Molybdenum cofactor deficiency (MoCD) is a rare differential diagnosis of neonatal hypoxic ischemic encephalopathy (HIE) with considerable variation in presentation and treatment outcomes. The temporospatial evolution of brain MRI appearances has not been well described. We systematically evaluated 35 MRI brain scans of 13 patients with neonatal MoCD (7 type A, 6 type B) to characterize brain abnormalities arising from exposure to toxicity related to sulfite accumulation and to evaluate changes in response to cPMP treatment in 6 children with MoCD type A.

View Article and Find Full Text PDF

Molybdenum containing enzymes play a pivotal role in the global carbon and nitrogen cycles using a common molybdopterin cofactor. Mechanistic studies have revealed a great deal about molybdenum enzymes but have yet to detail the impact the secondary binding interactions have on catalysis. Herein, we describe a double variant of formate dehydrogenase from (Fds) that changes the electrostatic and hydrogen bonding to the ligands to molybdenum resulting in a complete loss of formate oxidation activity, which occurs by outer sphere hydride transfer, and gain of nitrate reduction activity, which is proposed to follow an inner sphere oxygen atom transfer mechanism.

View Article and Find Full Text PDF

Unlabelled: Xanthinurias are rare inherited disorders of purine metabolism. Xanthinuria type III is caused by molybdenum cofactor deficiency (MoCD) due to pathogenic variants in MOCS1, MOCS2, MOCS3, or GEPH genes. Here, we described five Roma patients from four unrelated families with hypouricemia, accumulation of xanthine/hypoxanthine, deficiency of xanthine oxidase activity, variable age of diagnosis, and only asymptomatic or mild clinical course.

View Article and Find Full Text PDF

Endoplasmic reticulum (ER) stress is a critical regulator of cancer cell metabolism and survival. In this study, we elucidate the coordinated roles of two key ER stress mediators, Activating Transcription Factor 4 (ATF4) and X-box Binding Protein 1 spliced (XBP1s), in regulating purine homeostasis in prostate cancer (PCa) cells. We demonstrate that ATF4 directly upregulates Molybdenum Cofactor Sulfurase (MOCOS), a key enzyme in purine catabolism, while XBP1s induces the expression of xanthine dehydrogenase (XDH), the principal MOCOS target in this pathway.

View Article and Find Full Text PDF