A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Direct atomic-scale investigation of the coarsening mechanisms of exsolved catalytic Ni nanoparticles. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Exsolution-active catalysts allow for the formation of highly active metallic nanoparticles, yet recent work has shown that their long-term thermal stability remains a challenge. In this work, the dynamics of exsolved Ni nanoparticles are probed in-situ with atomically resolved secondary electron imaging with environmental scanning transmission electron microscopy. Pre-characterization shows embedded NiO nanostructures within the parent oxide. Subsequent in-situ exsolution demonstrates that two populations of exsolved particles form with distinct metal-support interactions and coarsening behaviors. Nanoparticles which precipitate above embedded nanostructures are observed to be more stable, and are prevented from migrating on the surface of the support. Nanoparticle migration which fits random-walk kinetics is observed, and particle behavior is shown to be analogous to a classical wetting model. Additionally, DFT calculations indicate that particle motion is facilitated by the support oxide. Ostwald ripening processes are visualized simultaneously to migration, including particle redissolution and particle ripening.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12290124PMC
http://dx.doi.org/10.1038/s41467-025-61971-zDOI Listing

Publication Analysis

Top Keywords

direct atomic-scale
4
atomic-scale investigation
4
investigation coarsening
4
coarsening mechanisms
4
mechanisms exsolved
4
exsolved catalytic
4
nanoparticles
4
catalytic nanoparticles
4
nanoparticles exsolution-active
4
exsolution-active catalysts
4

Similar Publications