Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Lineage plasticity drives treatment resistance in lung adenocarcinoma (LUAD) as cancer cells adopt new identities. In this issue of , Fort and colleagues (doi:10.1101/gad.352742.125) report HNF4α as a key regulator of hybrid identity states and tumor progression in NKX2-1-positive LUAD. Using murine and human models, they show that HNF4α promotes gastrointestinal/liver-like programs and suppresses pulmonary identity by modulating cell identity-specific binding of NKX2-1. In addition, RAS/MEK signaling was implicated in maintenance of this hybrid identity state by regulating NKX2-1 chromatin binding in LUAD. These findings nominate HNF4α as a driver of LUAD plasticity and a potential therapeutic target to overcome resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12404191 | PMC |
http://dx.doi.org/10.1101/gad.353142.125 | DOI Listing |