Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Eukaryotic Translation Initiation Factor 5A (eIF5A) undergoes a unique post-translational modification of hypusination, converting a lysine 50 residue to hypusine (hypK50). While a few studies have investigated the role of the spermidine-hypusine-eIF5A axis in neurodegenerative diseases, including the pathological accumulation of tau and TAR DNA-binding protein 43 (TDP-43), the role of the hypusine pathway in neurological diseases remains vastly understudied. Thus, the focus of this review is highlighting emerging research on the mechanisms by which aberrant and chronic increases in hypusinated eIF5A (eIF5A) govern nucleocytoplasmic transport, stress granule dynamics, and protein aggregation to encourage further research of this pathway in multi-etiology dementia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbadis.2025.167991 | DOI Listing |