A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

The role of macromolecular crowders in the formation and compaction of the nucleoid. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The chromosomal DNA of is approximately a thousand times longer than the linear dimensions of the cell it occupies. Nevertheless, it fills only about one-half of the cytosolic volume of the cell. The volume pervaded by the chromosomal DNA is known as nucleoid. The nucleoid is a ribosome-depleted region that behaves as a distinct liquid-like phase within the cytosol. In most bacteria, including , which lack membrane-enclosed organelles, the phase separation between the nucleoid and the ribosome-rich cytosolic fraction represents the most prominent organizational principle of the cell's cytosolic interior. This review explores the mechanisms driving nucleoid phase separation, including the roles of DNA-binding proteins, supercoiling, and active DNA looping. Recent studies highlight macromolecular crowding as the dominant factor governing this spatial organization. The main focus of this review is on experimental and theoretical works-ranging from and studies to polymer physics-based models-that elucidate how macromolecular crowding drives nucleoid phase formation and regulates DNA compaction .

Download full-text PDF

Source
http://dx.doi.org/10.1128/ecosalplus.esp-0002-2024DOI Listing

Publication Analysis

Top Keywords

chromosomal dna
8
phase separation
8
nucleoid phase
8
macromolecular crowding
8
nucleoid
6
role macromolecular
4
macromolecular crowders
4
crowders formation
4
formation compaction
4
compaction nucleoid
4

Similar Publications