A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Revealing the Structural Organization of Starch From Native Potatoes Using Polarization-Resolved Second Harmonic Generation Microscopy. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Starch from a single botanical source can exhibit variations in physicochemical properties in both its native and hydrolyzed forms. This study examined the structural and functional characteristics of starch from five potato varieties of India. In vitro enzymatic hydrolysis was employed to determine the dextrose equivalent profile of each starch type. The amylose content among the five potato varieties ranged from 17.5 and 25%. Optical microscopy revealed that the native starch granules were ovoid or elliptical in shape. X-ray diffraction analysis confirmed the presence of starch crystallinity and identified spectral peaks characteristic of A-type starch crystals in the native form. Fourier transform infrared spectra indicated common stretching and deformation of bonds in all native starches. Differential scanning calorimeter endotherms showed the highest and lowest gelatinization peak temperatures among the starch varieties. Additionally, polarization-resolved second harmonic generation microscopy was employed to image the starch granules and obtain high-resolution structural insights, revealing distinctive patterns of starch crystallinity. The findings of this study can help to optimize the usage of potato starch in food and nonfood industries. Additionally, understanding the control points of starch digestion and genetically tailoring potato varieties with different digestibility profiles could be beneficial for nutraceutical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1093/mam/ozaf010DOI Listing

Publication Analysis

Top Keywords

starch
12
potato varieties
12
polarization-resolved second
8
second harmonic
8
harmonic generation
8
generation microscopy
8
starch granules
8
starch crystallinity
8
native
5
revealing structural
4

Similar Publications