A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Straightforward, safe, and efficient interlocking screw insertion during intramedullary nailing using a Steinmann pin and hammer: a comparative study. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Accurately targeting distal nail holes and placing distal interlocking screws pose challenges during intramedullary nailing. This study proposes a straightforward technique for distal locking screw insertion using a Steinmann pin, eliminating the need to reposition the pin or drill bit. We utilized 18 Sawbones femur models and intramedullary femur nails. A first-year resident created two distal locking holes on each model, employing both the conventional freehand technique and a novel method involving a Steinmann pin and hammer under image intensification. These techniques were evaluated based on three parameters: (1) the time required to create distal locking holes, measured from the moment the pin was positioned at the center of the hole until the far cortex was drilled through the interlocking hole; (2) the radiation dose (in mrem/h), as estimated with a personal gamma radiation dosimeter; and (3) the number of failures, defined as the creation of more than one hole in the near and far cortex. The new technique was associated with a lower radiation dose (P=0.0268) and fewer failures (P=0.0367) than the conventional approach. Additionally, the time required to establish distal holes was shorter using the new technique compared to the conventional method (P=0.0217). The creation of distal interlocking holes with a Steinmann pin and hammer is accurate, efficient, and cost-effective.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12093555PMC
http://dx.doi.org/10.12771/emj.2024.e39DOI Listing

Publication Analysis

Top Keywords

steinmann pin
16
pin hammer
12
distal locking
12
screw insertion
8
intramedullary nailing
8
distal interlocking
8
locking holes
8
time required
8
hole cortex
8
radiation dose
8

Similar Publications