98%
921
2 minutes
20
Background: Brain implants have significant potential for therapeutic applications and neuroscience research, but complex tissue responses often compromise their long-term stability. To address this challenge, differential coexpression analysis can be used to identify key molecular regulators involved in brain implant responses.
Results: We developed DiffCoRank, an integrated framework that improves differential coexpression analysis by integrating the techniques of RNA-Seq data preprocessing, gene filtering, correlation-based module identification, and network analysis to discover differentially coexpressed gene clusters. A key innovation of our approach is false discovery rate (FDR) based selection of strongly connected genes (SCGs), by which we improve detection of strong coexpression patterns that otherwise could be lost to spurious correlations. To enhance the identification of different modules, we employ a hybrid clustering technique that combines uniform manifold approximation and projection (UMAP) with density-based spatial clustering of applications with noise (DBSCAN). We propose a multi-criteria hub gene ranking system incorporating network centrality metrics such as degree, closeness, betweenness, and eigenvector centrality to prioritise biologically relevant genes. Additionally, we created a user-friendly application to visualize and explore the results of DiffCoRank interactively.
Conclusions: Our method successfully identified key gene modules involved in oxidative stress, calcium signaling, immunological regulation, autophagic recovery, and vascular remodeling in RNA-Seq data of implanted rat brain tissue. Furthermore, we compared our results to those of other existing coexpression analysis frameworks, showing that our method successfully identifies unique regulatory processes and consistent coexpression patterns. Our research offers novel insights into the molecular processes that explain implant-tissue interactions and possible approaches to improve the robustness and biocompatibility of brain interfaces.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12288212 | PMC |
http://dx.doi.org/10.1186/s12859-025-06232-y | DOI Listing |
Kidney Blood Press Res
September 2025
Objective: Cisplatin-induced acute kidney injury (Cis-AKI) is a significant cause of renal damage, characterized by tubular injury, ferroptosis, and oxidative stress. While therapeutic options for Cis-AKI remain limited, identifying novel targets to prevent kidney injury is critical. This study focuses on GALNT14, a gene associated with ferroptosis, and its potential role in mitigating Cis-AKI.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland.
Spatial omics allow for the molecular characterization of cells in their spatial context. Notably, the two main technological streams, imaging-based and high-throughput sequencing-based, give rise to very different data modalities. The characteristics of the two data types are well known in spatial statistics as point patterns and lattice data.
View Article and Find Full Text PDFDev Biol
September 2025
School of Biological and Chemical Sciences, University of Galway, Biomedical Sciences Building, Newcastle Road, Galway H91 W2TY, Ireland. Electronic address:
The transcription factor Six1 and its co-activator Eya1 play central and varied roles during the development of sensory neurons derived from the cranial placodes in vertebrates. Previous studies suggested that these proteins promote both the maintenance of proliferative neuronal progenitors and neuronal differentiation. Context-specific interactions of Six1 and/or Eya1 with different cofactors are likely to contribute to the activation of distinct target genes during different stages of placodal neurogenesis.
View Article and Find Full Text PDFBrain Behav Immun
September 2025
Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Biomedical Research Networking Center for Rare Diseases (CIBERER), Barcelona 08003, Spain.
Treatment-resistant depression (TRD) is a severe condition characterized by chronic and recurrent depressive symptoms, leading to significant morbidity and a considerable socio-economic impact. Genetic and biological studies suggest that TRD is associated with distinct biological characteristics. In this study, we analysed whole-transcriptome differences in 293 patients with major depressive disorder (MDD) to compare TRD (N = 150) vs non-TRD (N = 143) cases.
View Article and Find Full Text PDFFish Shellfish Immunol
September 2025
Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China. Electronic address:
As a member of the inflammatory caspases, Caspase-1 can increase the host inflammatory response against pathogen invasion and also function dominantly in apoptosis. In this study, we cloned and obtained two transcripts of Caspase-1 in large yellow croaker (Larimichthys crocea), namely Lc-Caspase-1_tv1 and Lc-Caspase-1_tv2. The ORF of Lc-Caspase-1_tv1 is 1,239 bp, whereas Lc-Caspase-1_tv2 is 1,167 bp in length, encoding a protein of 412 and 388 aa, and both of which contains a CARD and a CASc domain.
View Article and Find Full Text PDF