A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Applying an Anti-Kasha Model Resolves Differences Between Photosynthetic and Artificial Pigments. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The current interpretation of excitation energy transfer (EET) processes in natural photosynthesis generally relies on Kasha's rule, suggesting that internal conversion (IC) processes usually outpace any EET between higher excited states. It is, however, known from research on artificial systems that Kasha's rule does not apply to many dyes, especially when found in assembled clusters analogous to photosynthetic chlorophyll (Chl)-protein complexes. In this contribution, a semiempirical Förster-type model is applied to otherwise well-investigated pigments of natural photosynthesis (Chls , , and various carotenoids). Strong potential for anti-Kasha processes is identified in all investigated pigments, based on their high Coulomb coupling elements, similar to compounds with already known anti-Kasha properties. The pigments are further found to form strongly delocalized excitons, especially between the higher excited states usually responsible for anti-Kasha pathways. Test calculations with different pigment compositions for various natural light harvesting complexes (LHCII, CP24, CP26, CP29, FCP) demonstrate how the higher band EET network and absorbance could be affected by the presence of accessory pigments: Chl -only networks should perform anti-Kasha EET, but this is suppressed by the presence of accessory pigments via several mechanisms (exciton disruption, spectral competition, energy sinks and fast, non-Chl IC). The apparent "special" behavior of photosynthetic systems is thus resolved as the result of pigment mixtures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12337091PMC
http://dx.doi.org/10.1021/acs.jpcb.5c02465DOI Listing

Publication Analysis

Top Keywords

natural photosynthesis
8
kasha's rule
8
higher excited
8
excited states
8
presence accessory
8
accessory pigments
8
pigments
6
applying anti-kasha
4
anti-kasha model
4
model resolves
4

Similar Publications