98%
921
2 minutes
20
The Arctic Ocean, once regarded as a pristine and untouched icy expanse, now faces an increasing threat from microplastic (MPs, <5 mm) pollution. This study presents quantitative data on MP contamination in the water column of the western Arctic Ocean. A total of 324 replicate water samples were collected using a CTD (Conductivity, Temperature, and Depth) rosette sampler from depths ranging from 9 to 297 m. The isolated MPs were analyzed using micro-Fourier Transform Infrared Spectroscopy (μ-FTIR). The average abundance of MP was 0.06 particles L, and the Beaufort Sea station (BFS 26) recorded the highest concentration (0.22 particles L). Blue-coloured and fibrous nature, small MPs (<500 μm) primarily composed of polyolefins were dominant. The distribution of MPs in the water column was as follows: Polar Mixed Layer (59 %), Pacific or Atlantic halocline (22 %), and the Intermediate layer of Atlantic water (19 %). This study provides valuable insights into the vertical distribution of MPs, their characteristics, and the probable sources of the influx of MPs into this region.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2025.144577 | DOI Listing |
Beilstein J Nanotechnol
August 2025
Faculty of Engineering and Technology, Saigon University, 273 An Duong Vuong Street, Cho Quan Ward, Ho Chi Minh City 700000, Vietnam.
This study employs a bibliometric analysis using CiteSpace to explore research trends on the impact of biochar on microplastics (MPs) in soil and water environments. In agricultural soils, MPs reduce crop yield, alter soil properties, and disrupt microbial diversity and nutrient cycling. Biochar, a stable and eco-friendly material, has demonstrated effectiveness in mitigating these effects by restoring soil chemistry, enhancing microbial diversity and improving crop productivity.
View Article and Find Full Text PDFJ Anal At Spectrom
September 2025
Department of Environmental Systems Science, ETH Zurich Universitätstrasse 16 8092 Zurich Switzerland.
Plastic pollution in marine environments poses ecological risks, in part because plastic debris can release hazardous substances, such as metal-based additives. While microplastics have received considerable attention as vectors of contaminants, less is known about larger macroplastics and their role in the spatial and temporal redistribution of substances. In this study, pristine, store-bought plastic items and macroplastics recovered from the North Pacific Subtropical Gyre (NPSG) were analysed using Fourier-Transform Infrared Spectroscopy (FTIR) to identify polymer types, and bulk acid digestion followed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) for total metal quantification.
View Article and Find Full Text PDFEnviron Toxicol Chem
September 2025
Univ. Savoie Mont Blanc, CNRS. EDYTEM.
The environmental impact of Tire and Road Wear Particles (TRWP), arising from tire-road friction, has raised significant concerns. Like microplastics, TRWP contaminate air, water, and soil, with considerable annual emissions and runoff into freshwater ecosystems. Among TRWP compounds, 6PPD-Q, leached from tire particles, shows varying toxicity across species, notably affecting fish and invertebrates.
View Article and Find Full Text PDFEnviron Sci Process Impacts
September 2025
Department of Chemistry & Chemical Biology, McMaster University, Hamilton, L8S 4M1, Canada.
Microplastics are ubiquitous in the environment, accumulate hydrophobic organic contaminants, and suppress the photodegradative loss of these contaminants. Thus, they have the potential to act as vectors for contaminant uptake by organisms and transport to remote regions. Our current understanding of microplastic-sorbed contaminant photodegradation is drawn from experiments with unpigmented microplastics, but the interaction of pigments with light may alter the loss and corresponding persistence of sorbed contaminants.
View Article and Find Full Text PDFEnviron Res
September 2025
Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur-713209, India. Electronic address:
The coexistence of antibiotics (AB) and microplastics (MP) in the environment has led to the formation of AB-MP complexes, posing several ecological and public health challenges. This review explores the mechanisms driving AB adsorption onto MPs, including diverse interactions (hydrophobic interactions, hydrogen bonding, π-π stacking, and ionic exchange) and their role in maintaining the persistence and mobility of the complexes. These complexes have been reported to serve as reservoirs/vectors for antimicrobial resistance (AMR), disrupt microbial communities, and enhance the bioavailability of ABs, thus posing various threats affecting biodiversity health and ecosystem stability.
View Article and Find Full Text PDF