The amount of releasable insulin depends on continuous oxidative phosphorylation.

Function (Oxf)

Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The consensus or canonical model of glucose-stimulated insulin secretion provides that the metabolism of glucose closes KATP channels by increase of the ATP/ADP ratio and that the ensuing depolarization-induced Ca2+ influx through voltage-dependent Ca2+ channels represents the immediate signal for the onset of exocytosis. However, it has been shown earlier that the depolarization-induced secretion can be suppressed by inhibition of the oxidative phosphorylation, pointing to an energy-requiring step presumably located downstream of Ca2+ influx. Here, we have investigated the relation between oxidative phosphorylation and the insulinotropic effect of K+ depolarization to better localize the energy-requiring step. The specific inhibitor of the mitochondrial F1FO ATPase, oligomycin, concentration-dependently and time-dependently inhibited the insulin secretion elicited by a strong K+ depolarization (40 mM). Perifusion with 4 µg/ml of oligomycin for 20, 10 or 5 min prior to the K+ depolarization reduced the amount of insulin secreted from freshly isolated islets from control value to about 5% with a half-time of 1.6 min. 0.4 µg/ml of oligomycin required more time for comparable effects. Cultured islets were less susceptible to the inhibitory action of oligomycin than fresh islets, corresponding to their significantly higher ATP/ADP ratio. The perifusion with oligomycin prior to the K+ depolarization did not decrease the depolarization-elevated cytosolic Ca2+ concentration and did not affect the resting plasma membrane potential and the extent of depolarization by 40 mM KCl. In conclusion, the exocytotic machinery of the beta cell requires a continuously running oxidative phosphorylation to remain responsive to the Ca2+ signal for granule fusion.

Download full-text PDF

Source
http://dx.doi.org/10.1093/function/zqaf033DOI Listing

Publication Analysis

Top Keywords

oxidative phosphorylation
16
insulin secretion
8
atp/adp ratio
8
ca2+ influx
8
energy-requiring step
8
depolarization 40 mm
8
prior depolarization
8
ca2+
5
depolarization
5
oligomycin
5

Similar Publications

At present there is no metabolic characterization of acute promyelocytic leukemia (APL). Pathognomonic of APL, PML::RARα fusion protein rewires metabolic pathways to feed anabolic tumor cell's growth. All-trans retinoic acid (ATRA) and arsenic trioxide (ATO)-based therapies render APL the most curable subtype of AML, yet approximately 1% of cases are resistant and 5% relapse.

View Article and Find Full Text PDF

Gut microbiome and mitochondrial crosstalk in Schizophrenia, a mental disability: Emerging mechanisms and therapeutic targets.

Neurosci Biobehav Rev

September 2025

Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India. Electronic address:

Gut-mitochondria is an emerging paradigm in understanding the pathophysiology of complex neuropsychiatric disorders such as Schizophrenia (SCZ). This bidirectional communication network connects the gastrointestinal microbiota with mitochondrial function and brain health, offering novel insights into disease onset and progression. SCZ, characterized by hallucinations, delusions, cognitive impairments, and social withdrawal, has traditionally been attributed to genetic and neurochemical imbalances.

View Article and Find Full Text PDF

This study aimed to investigate the protective mechanism of Ginsenoside Rg3 (Rg3) against Di-n-butyl phthalate (DBP) induced spermatogenic damage, focusing on the Src/PI3K/Akt pathway. In vivo experiments demonstrated that Rg3 restored DBP-induced dysregulation of gap junction (GJ) protein connexin 43 (Cx43), improved testicular structure, enhanced sperm parameters (count and motility), and upregulated phosphorylation of Src, PI3K, and Akt (p-Src, p-PI3K, p-Akt) in mice. In vitro studies, using the metabolite of DBP, monobutyl phthalate (MBP), and pathway inhibitors (PP2 for Src and LY294002 for PI3K), further confirmed these effects.

View Article and Find Full Text PDF

DST-3, a novel cryptotanshinone derivate, attenuates glutamate excitotoxicity after ischemic stroke via CREB-Homer1 axis activation.

Phytomedicine

September 2025

National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Gu

Background: Ischemic stroke remains a leading cause of death and disability worldwide. While cryptotanshinone (CTS) shows therapeutic promise, its clinical application is hindered by poor pharmacokinetic properties. This study investigated DST-3, a novel derivative of CTS for enhanced neuroprotective effect against ischemic stroke with improved drug-like properties.

View Article and Find Full Text PDF

Heart failure remains a major global health concern characterized by complex pathophysiological processes and significant clinical challenges. While the distinct roles of metabolic and epigenetic dysregulation in heart failure are increasingly recognized, their intricate interplay remains a critical, yet underexplored, aspect of its pathophysiology. This review provides a comprehensive examination of this metabolic-epigenetic crosstalk, exploring how metabolic changes, such as impaired fatty acid oxidation, increased glycolysis, and mitochondrial dysfunction, alter epigenetic landscapes through shifts in intermediary metabolites including acetyl-CoA, NAD+, and α-ketoglutarate.

View Article and Find Full Text PDF