A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Environmental Heterogeneity Imposed by Photovoltaic Array Alters Grassland Soil Microbial Communities. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The rapid expansion of photovoltaic (PV) energy production has generated concern over its potential ecosystem impacts. PV arrays induce unique microenvironmental conditions by altering resource availability and substantially impacting aboveground processes. However, the belowground consequences of PV development are understudied, limiting our understanding of overall ecosystem impacts. Here, we paired soil physiochemical, molecular, and functional analyses with aboveground measures to assess plant-soil-microbial responses to distinct microsites beneath a single-axis tracking PV system in a semi-arid C grassland. We hypothesized that each PV microsite would harbor a unique suite of soil physiochemical properties and microbiomes. We found only subtle differences in soil organic matter and pH, corresponding with aboveground productivity patterns, but other physiochemical properties remained unchanged. However, soil microbial community structure and function differed markedly across PV microsites and from a reference grassland plot. Within the array, microbial decomposition rates were highest where plant productivity and organic matter were greatest, but surprisingly lowest where soil moisture remained elevated throughout the growing season. Overall, these findings suggest that PV arrays create disparate patterns of soil microbial community structure and function, which may feedback to influence overall ecosystem functionality. Coarse measures of soil physiochemical properties, such as total carbon, may overlook key impacts of PV development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12285215PMC
http://dx.doi.org/10.1111/gcb.70376DOI Listing

Publication Analysis

Top Keywords

soil microbial
12
soil physiochemical
12
physiochemical properties
12
soil
8
ecosystem impacts
8
organic matter
8
microbial community
8
community structure
8
structure function
8
environmental heterogeneity
4

Similar Publications