Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nanofluidic membranes derived from cellulose-based biomaterials have garnered increasing attention for ion transport and regulation due to their modifiable nature, ordered structures, sustainability, and excellent compatibility. However, their practical applications in ionic circuits, energy conversion, and sensing have been limited by insufficient mechanical strength and suboptimal ion transport properties. In this study, we report ultra-strong, highly ion-conductive bio-membranes fabricated through phosphorylation-assisted cell wall engineering. This process introduces high-density anionic phosphate groups onto cellulose chains while preserving their natural hierarchical alignment across macroscopic to molecular scales. The resulting PhosWood-40 membrane (bio-membranes phosphorylated for 40 minutes) shows exceptional performance, with a record-high ion conductivity of 21.01 mS cm in 1.0 × 10 mol L KCl aqueous solution, an ionic selectivity of 0.95, and a high tensile strength up to 241 MPa under dry conditions and 66 MPa under wet conditions. Phosphorylation enhances the membrane's ionic conductivity by 100-fold and improves cation/anion ratio by 38-fold compared to the unmodified membrane, primarily due to the increased surface charge density and optimized ion channel accessibility. Under simulated conditions of artificial seawater (0.5 mol L) and river water (0.01 mol L), the phosphorylated PhosWood-40 membranes achieve a remarkable output power density of 6.4 W m, surpassing unmodified membranes by 30-fold and outperforming other bio-based nanofluidic systems. This work highlights the potential of renewable and easily modifiable cellulose-based biomaterials for developing high-performance nanofluidic systems.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d5mh01003aDOI Listing

Publication Analysis

Top Keywords

phosphorylation-assisted cell
8
cell wall
8
wall engineering
8
ultra-strong highly
8
highly ion-conductive
8
ion-conductive bio-membranes
8
cellulose-based biomaterials
8
ion transport
8
nanofluidic systems
8
engineering enables
4

Similar Publications

Nanofluidic membranes derived from cellulose-based biomaterials have garnered increasing attention for ion transport and regulation due to their modifiable nature, ordered structures, sustainability, and excellent compatibility. However, their practical applications in ionic circuits, energy conversion, and sensing have been limited by insufficient mechanical strength and suboptimal ion transport properties. In this study, we report ultra-strong, highly ion-conductive bio-membranes fabricated through phosphorylation-assisted cell wall engineering.

View Article and Find Full Text PDF

Protein kinases are key regulators of cell signaling and have been important therapeutic targets for three decades. ATP-competitive drugs directly inhibit the activity of kinases but these enzymes work as part of complex protein networks in which protein-protein interactions (often referred to as kinase docking) may govern a more complex activation pattern. Kinase docking is indispensable for many signaling disease-relevant Ser/Thr kinases and it is mediated by a dedicated surface groove on the kinase domain which is distinct from the substrate-binding pocket.

View Article and Find Full Text PDF