Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The development of wearable electronics and the current era of big data requires the sustainable power supply of numerous distributed sensors. In this paper, we designed and experimentally studied an energy harvester based on ferrofluid sloshing. The harvester contains a horizontally positioned cylindrical vial, half-filled with a ferrofluid exposed to a magnetic field. The vial is excited by a laboratory shaker and the induced voltage in a nearby coil is measured under increasing and decreasing shaking rates. Five ferrofluid samples are involved in the study, yielding the dependence of the electromotive force on the ferrofluid magnetization of saturation. The energy harvesting by ferrofluid sloshing is investigated in various magnetic field configurations. It is found that the most effective magnetic field configuration for the energy harvesting is characterized by the field intensity perpendicular to the axis of the vial motion and gravity. The harvested electric power linearly increases with the ferrofluid magnetization of saturation. The electromotive force generated by each ferrofluid is found identical for measurements in acceleration and deceleration mode. A significant reduction in the induced voltage is observed in a stronger magnetic field. The magneto-viscous effect and partial immobilization of the ferrofluid in the stronger magnetic field is considered. The magneto-viscous effect is documented by a supplementing experiment. The results extend knowledge on energy harvesting by ferrofluid sloshing and may pave the way to applications of ferrofluid energy harvesters for mechanical excitations with changing directions in regard to the magnetic field induction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12283966PMC
http://dx.doi.org/10.1038/s41598-025-12490-wDOI Listing

Publication Analysis

Top Keywords

magnetic field
24
energy harvesting
16
ferrofluid sloshing
12
ferrofluid
10
induced voltage
8
electromotive force
8
ferrofluid magnetization
8
magnetization saturation
8
harvesting ferrofluid
8
stronger magnetic
8

Similar Publications

Beyond Fixed-Size Skyrmions in Nanodots: Switchable Multistability with Ferromagnetic Rings.

Nano Lett

September 2025

Depto. Polimeros y Materiales Avanzados: Fisica, Quimica y Tecnologia, Universidad del País Vasco, UPV/EHU, 20018 San Sebastian, Spain.

We demonstrate a novel approach to controlling and stabilizing magnetic skyrmions in ultrathin multilayer nanostructures through spatially engineered magnetostatic fields generated by ferromagnetic nanorings. Using analytical modeling and micromagnetic simulations, we show that the stray fields from a Co/Pd ferromagnetic ring with out-of-plane magnetic anisotropy significantly enhance the Néel-type skyrmion stability in an Ir/Co/Pt nanodot, even stabilizing the skyrmion in the absence of Dzyaloshinskii-Moriya interactions. We demonstrate precise control over the skyrmion size and stability.

View Article and Find Full Text PDF

Enhanced Curie temperature of ferromagnetic CrSBr by interfacial coupling with elemental two-dimensional ferroelectrics: triggering a new p-d super-exchange coupling path.

Phys Chem Chem Phys

September 2025

Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.

Owing to their distinctive thickness and physical attributes, two-dimensional (2D) materials have exhibited considerable promise in the field of microelectronic devices. Notably, 2D magnetic materials that maintain long-range magnetic order and can be readily modulated by external fields have garnered substantial attention. However, CrSBr, despite being a 2D van der Waals (vdW) semiconducting magnet with an appropriate band gap and stability in air, faces significant hindrance for practical utilization due to its Curie temperature () of 146 K.

View Article and Find Full Text PDF

Tailoring the Magnetic Properties of 2D Metal-Organic Networks by Harnessing the Coordination Sphere.

Angew Chem Int Ed Engl

September 2025

Institution Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), Madrid, 28049, Spain.

Achieving magnetic ordering in low-dimensional materials remains a key objective in the field of magnetism. Herein, coordination chemistry emerges as a powerful discipline to promote the stabilization of magnetism at the nanoscale. We present a thorough study of exemplary two-dimensional metal-organic nanoarchitectures synthesized on a Au(111) substrate, which are rationalized by using surface-science techniques and theoretical calculations.

View Article and Find Full Text PDF

Alternating Magnetic Fields Remove Biofilms but Damage Cells on Implant Models Also with Negligible Bulk Heating.

ACS Appl Mater Interfaces

September 2025

Institute of Colloid and Biointerface Science, Institute of Colloid and Biointerface Science, BOKU University, 1190 Vienna, Austria.

Implant-associated infections caused by bacterial biofilms remain a major clinical challenge, with high morbidity, often necessitating prolonged antibiotic therapy or implant revision surgery. To address the need for noninvasive alternatives, we investigated the use of alternating magnetic fields (AMFs) as a localized treatment modality for eradicating biofilms on titanium implant model surfaces. We demonstrate that AMF exposure effectively removes biofilms and kills bacteria at moderately elevated temperatures on the implant.

View Article and Find Full Text PDF

Background: Charcot foot is a debilitating complication of peripheral neuropathy and is primarily associated with diabetes, leading to structural damage, ulceration, and osteomyelitis. Pulsed electromagnetic field (PEMF) therapy is a promising treatment modality for wound healing and bone metabolism.

Objective: To evaluate the efficacy of PEMF therapy in promoting bone growth and ulcer healing in patients with Charcot foot ulcers.

View Article and Find Full Text PDF