A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

The Potential Mechanism of Kushen Decoction in Treating Haemorrhoids: An Integration of Network Pharmacology, Molecular Docking and Molecular Dynamics Simulation. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Kushen decoction (KSD), a traditional Chinese medicine, is extensively utilised for haemorrhoid treatment, yet its underlying mechanisms remain elusive. This study employs a systematic approach to elucidate the therapeutic mechanisms of KSD in haemorrhoid treatment by integrating network pharmacology, molecular docking and molecular dynamics simulation. A total of 788 active ingredients were identified from KSD, among which 623 intersected with 99 targets associated with haemorrhoids. Network pharmacology revealed quercetin, rhodionin and luteolin as key ingredients targeting 10 hub targets (CRP, PTGS2, ALB, CYP3A4, KLK3, TNF, MMP9, CYP1A2, CYP3A5 and CYP2C8) implicated in haemorrhoid pathology. Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) analyses indicated the involvement of these targets in pathways such as cGMP-PKG signalling, tryptophan metabolism, steroid hormone biosynthesis and drug metabolism-cytochrome P450. Moreover, molecular docking and molecular dynamics simulations confirmed the binding solid affinity of key ingredients to hub targets. These findings suggest that KSD's therapeutic effects on haemorrhoids are mediated through symptom alleviation, anti-inflammatory actions and immune enhancement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12282622PMC
http://dx.doi.org/10.1049/syb2.70029DOI Listing

Publication Analysis

Top Keywords

network pharmacology
12
molecular docking
12
docking molecular
12
molecular dynamics
12
kushen decoction
8
pharmacology molecular
8
dynamics simulation
8
haemorrhoid treatment
8
key ingredients
8
hub targets
8

Similar Publications