Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Plant-inspired soft robots enable distributed environmental monitoring. Fliers, soft robots that are carried passively by the wind, can be effectively deployed and cover large areas and distances. State-of-the-art fliers for humidity sensing are largely composed of electronic components, which increase cost and generate electronic waste. Here, we introduce self-deployable and biodegradable fliers inspired by natural seeds. These artificial fliers are composed of fluorescent, cellulose-based composites with sensing capabilities. The material is shaped into artificial seeds using scalable 3D extrusion processing. Red-emitting Mn-doped Er, Yb:NaYF nanoparticles in the composite provide a strong optical emission upon excitation at 980 nm wavelength. The cellulose matrix absorbs water, which quenches the intensity of fluorescence of the nanoparticles. Increasing humidity thus changes the color of the fluorescence emission from red to green. We used ratiometric sensing to detect the humidity of the surroundings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d5nr01318f | DOI Listing |