Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
SARS-CoV-2, the causative agent of COVID-19, is predominantly transmitted by respiratory aerosol and contaminated surfaces. Recent studies demonstrated that aerosols can become acidic, and acidification has been proposed as decontamination method. Here, we investigate how SARS-CoV-2 reacts to acidic pH and by which mechanism the virus is inactivated. We show that a pH below 3 is required to inactivate SARS-CoV-2 in a period of seconds to minutes. While we measured a 1000 to 10,000-fold drop in infectivity, virion structure remained intact under these conditions. Using super-resolution microscopy, we found that the attachment of virions to target cells is abrogated after acidic treatment, revealing spike protein (S) as the major inactivation target. Limited proteolysis of S combined with testing spike-specific antibodies for binding under low pH conditions revealed that exposure of SARS-CoV-2 to pH below 3 results in partial unfolding of S, thereby preventing binding of virions to target cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12280015 | PMC |
http://dx.doi.org/10.1038/s42003-025-08514-w | DOI Listing |