98%
921
2 minutes
20
Motivation: The accurate differentiation between mitochondrial DNA (mtDNA) and nuclear mitochondrial DNA segments (NuMTs) is a critical challenge in studies involving mitochondrial disorders. Mapping the mtDNA mutation spectrum and quantifying heteroplasmy are complex tasks when using next-generation sequencing methods, mostly due to NuMTs contamination in data analysis.
Results: Here, we present a novel, easy-to-use standalone command-line tool designed to reliably discriminate long reads originated by either mtDNA or NuMTs and generated by Oxford Nanopore Technologies (ONT) sequencing based on the known lack of CpG methylation in human mtDNA. MitSorter aligns the reads to the mitochondrial genome incorporating base modification calls directly from raw POD5 files. The resulting BAM file is then partitioned into two separate BAM files: one containing unmethylated reads and the other containing methylated reads. We show that MitSorter analysis can provide a more accurate landscape of the mtDNA mutation profile. We describe here the tool's features, computational framework, validation approach, and its potential applications in other genomic research areas.
Availability And Implementation: Source code and documentation, are available at https://github.com/asvarvara/MitSorter.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12275464 | PMC |
http://dx.doi.org/10.1093/bioadv/vbaf135 | DOI Listing |
Sci Adv
September 2025
Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
Somatic mitochondrial DNA (mtDNA) mutations are frequently observed in tumors, yet their role in pediatric cancers remains poorly understood. The heteroplasmic nature of mtDNA-where mutant and wild-type mtDNA coexist-complicates efforts to define its contribution to disease progression. In this study, bulk whole-genome sequencing of 637 matched tumor-normal samples from the Pediatric Cancer Genome Project revealed an enrichment of functionally impactful mtDNA variants in specific pediatric leukemia subtypes.
View Article and Find Full Text PDFGenetica
September 2025
Faculty of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia.
Population genetics plays a critical role in creating policies for managing fisheries, conservation, and development of aquaculture. The golden snapper, Lutjanus johnii (Bloch, 1792), is a highly commercial and aquaculture important snapper species. This study used mitochondrial markers D-loop (151 specimens) and Cytochrome b (Cyt-b, 120 specimens) from 10 populations, including populations from the east South China Sea, the west South China Sea and the Strait of Malacca to investigate the genetic diversity, population connectivity, and historical demography of L.
View Article and Find Full Text PDFJ Bioenerg Biomembr
September 2025
Department of Vascular, Shanghai TCM-INTEGRATED Hospital, Shanghai, 200082, China.
This study aimed to investigate the therapeutic effects of Sini Decoction on a murine model of peripheral arterial disease (PAD) and to explore its potential mechanisms of action related to mitochondrial autophagy and M1 macrophage polarization. A total of 36 specific-pathogen-free Kunming mice were used to establish a PAD model and were randomly assigned into four groups: the experimental group (EG, administered Sini Decoction via gavage), the control group (CG, administered rapamycin via gavage), the model group (MG, administered 0.9% sodium chloride solution via gavage), and the normal group (NG, administered 0.
View Article and Find Full Text PDFMol Cell Biol
September 2025
Department of Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan.
Erythropoiesis, i.e., process of red blood cell (RBC) production, is highly dependent on iron, with 60-70% of the total body iron incorporated into hemoglobin.
View Article and Find Full Text PDFMitochondrial DNA B Resour
September 2025
Department of Forestry and Nature Resources, National Chiayi University, Chiayi, Taiwan.
Hayata 1916 is a unique bamboo species endemic to Taiwan, typically found at elevations ranging from 500 to 1,500 meters. This study provides a detailed analysis of the complete chloroplast genome of for the first time. The genome spans 139,664 base pairs (bp) and consists of a large single-copy (LSC) region of 83,192 bp, a small single-copy (SSC) region of 12,869 bp, and two inverted repeat (IR) regions, each 21,798 bp in length.
View Article and Find Full Text PDF