Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Interaction with cannabinoid receptor 1 (CB1) partially determines the bioactivity of the phytocannabinoids. Consequently, there has also been significant effort directed toward preparing synthetic cannabinoids with either enhanced agonistic or antagonistic activity against this receptor. The design process of these molecules, and the identification of off-target effects at this receptor for molecules designed to target other proteins, would be aided by a reliable computational tool that can accurately predict binding. Furthermore, although the mechanism of CB1 agonism is understood, the conformational behavior that underlies the molecular mechanism of partial agonism is unclear. In this report, we provide a correction for calculating a ligand's affinity to the orthosteric site of CB1 to account for their partition into membranes, use this to register the predicted affinity (high and low) of cannabinoids, and discuss how a mechanism for THC partial agonism arises natively from the model consistent with experimental data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12273586 | PMC |
http://dx.doi.org/10.1016/j.isci.2025.112706 | DOI Listing |