A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Experimental demonstration of dual-polarization multiplexed optical phased array empowered by inverse design. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This paper presents a dual-polarization multiplexed optical phased array (OPA) implemented on a 220 nm silicon-on-insulator (SOI) platform, enabling continuous beam steering across TE and TM modes. While effectively guiding TE- and TM-polarized light, the proposed OPA on this platform faces the challenge of overcoming the intrinsically high effective refractive index disparity between the two modes upon radiation from the grating antenna. To mitigate this challenge, key OPA components - polarization beam combiner, polarization-independent beam splitter, and index-modulated pixelized grating antenna - were optimized using inverse design methods and integrated, enabling efficient and seamless beam steering across both polarizations. With a 100 nm wavelength tuning range and dual-polarization operation, the fabricated 64-channel OPA achieves a notable longitudinal beam steering range of 34.9° across the TE and TM modes, along with full 2-D beam steering capability. The experimental results confirm the effectiveness of the proposed approach, highlighting its potential for advancing the next-generation LiDAR and optical wireless communication systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12273540PMC
http://dx.doi.org/10.1515/nanoph-2025-0148DOI Listing

Publication Analysis

Top Keywords

beam steering
16
dual-polarization multiplexed
8
multiplexed optical
8
optical phased
8
phased array
8
inverse design
8
grating antenna
8
beam
6
experimental demonstration
4
demonstration dual-polarization
4

Similar Publications