A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Development of a gelatin methacryloyl double-layer membrane incorporated with nano-hydroxyapatite for guided bone regeneration. | LitMetric

Development of a gelatin methacryloyl double-layer membrane incorporated with nano-hydroxyapatite for guided bone regeneration.

Biomater Sci

State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Guided bone regeneration (GBR) is an effective technique for treating bone defects, with barrier membranes playing a critical role in preventing soft tissue invasion while supporting bone formation. However, conventional collagen GBR membranes have limitations, including poor mechanical strength, high swelling ratio, rapid biodegradation, and fragile structures. In this study, we developed a heterogeneous double-layer membrane with tunable physical, chemical, and biological properties, fabricated through simple photopolymerization and lyophilization of gelatin methacryloyl (GelMA) and nanohydroxyapatite (nHA). By adjusting the crosslinking time, methacrylation degree, and nHA concentration, the cryogels showed porous microstructures with different pore sizes ranging from 93 to 360 μm. Compressive mechanical testing, swelling measurements, and / biodegradation assays confirmed that the methacrylation of gelatin increased the compressive modulus to 29.02 MPa ( = 0.0002), reduced the swelling ratio to 714% ( = 0.002), and slowed the degradation rate to 41.2% after 48 hours ( = 0.002). Incorporating nHA further enhanced the mechanical properties and extended the degradation time. GelMA and nHA-GelMA cryogels exhibited excellent biocompatibility and promoted osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), particularly in the nHA-GelMA cryogel with large pore sizes. We selected a GelMA cryogel with the smallest pore size for optimal barrier function and an nHA-GelMA cryogel with the highest osteogenic potential to construct the double-layer GBR membrane. In a rat calvarial defect model, this novel membrane significantly enhanced bone regeneration, demonstrating markedly improved bone volume/tissue volume (BV/TV) and bone mineral density (BMD) compared to the control group ( = 0.0042 and = 0.0088, respectively), with efficacy comparable to that of a commercial GBR membrane. These findings demonstrate the promising potential of this simple, tunable double-layer GelMA/nHA cryogel membrane as a superior alternative for GBR applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d5bm00610dDOI Listing

Publication Analysis

Top Keywords

bone regeneration
12
gelatin methacryloyl
8
double-layer membrane
8
bone
8
guided bone
8
swelling ratio
8
pore sizes
8
nha-gelma cryogel
8
gbr membrane
8
membrane
6

Similar Publications