Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Crizotinib, a first-generation tyrosine kinase inhibitor, demonstrates excellent clinical efficacy in treating non-small cell lung cancer (NSCLC). However, its clinical application is often limited by severe hepatotoxicity, the underlying mechanisms of which remain poorly understood. This study aimed to investigate the molecular mechanisms of crizotinib-induced hepatotoxicity in mice using transcriptomic analysis. Male ICR mice were orally administered crizotinib at doses of 100, 200, and 300 mg/kg for 7 consecutive days. Hepatotoxicity was assessed by measuring serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, along with histopathological evaluation hematoxylin and eosin (H&E) staining. Transcriptomic and bioinformatics analyses of liver tissues were conducted to identify potential toxicological pathways. Oxidative stress markers were quantified using biochemical assay kits. Hepatic macrophage activation was examined by F4/80 immunostaining, and protein expression levels were analyzed by western blotting. Crizotinib administration resulted in dose-dependent liver injury, as indicated by elevated serum ALT and AST levels, body weight loss, and histological abnormalities. Transcriptomic profiling revealed significant enrichment of oxidative stress-related pathways, with protein-protein interaction (PPI) analysis identifying Jun as a key hub gene. Crizotinib significantly increased hepatic reactive oxygen species (ROS), malondialdehyde (MDA), and oxidized glutathione (GSSG) levels, while reducing reduced glutathione (GSH) levels and the GSH/GSSG ratio. Additionally, crizotinib significantly upregulated Bax and downregulated Bcl-2 expression, promoted macrophage infiltration, and increased the expression of JNK and NLRP3 proteins. These findings suggest that crizotinib-induced hepatotoxicity may be mediated by ROS-induced activation of the JNK/NLRP3 signaling pathway, which subsequently promotes hepatic inflammation and apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15376516.2025.2536058 | DOI Listing |