98%
921
2 minutes
20
The human gut microbiome impacts host health through metabolite production, notably short-chain fatty acids (SCFAs) derived from digestion-resistant carbohydrates (DRCs). While DRC supplementation offers a means to modulate the microbiome therapeutically, its effectiveness is often limited by the microbial community's complexity and individual variability in microbiome functionality. We utilized genome-scale metabolic models (GEMs) from the AGORA collection to provide a system-level overview of the metabolic capabilities of human gut microbes in terms of carbohydrate trophic networks and propose improved therapeutic interventions, based on microbial community design. Our study inferred the capability of AGORA strains to consume carbohydrates of varying structural complexities - including DRCs - and to produce metabolites amenable to cross-feeding, such as SCFAs. The resulting functional database indicated that DRC-degrading abilities are rare among gut microbes, suggesting that the presence or absence of specific taxa can determine the success of DRC-based interventions. Additionally, we found that metabolite production profiles exceed family-level variation, highlighting the limitations in predicting intervention outcomes based on gut microbial composition assessed at higher taxonomic levels. In response to these findings, we integrate reverse ecology principles, network analysis and GEM community modeling to guide the design of minimal yet resilient microbial communities to better guarantee intervention response (purpose-based communities). As a proof of principle, we predicted a purpose-based community designed to enhance butyrate production when used in conjunction with DRC supplementation that displays resilience under nutritional stress, such as amino acid restriction. We further seeded the identified purpose-based community into modeled human microbiomes previously demonstrated to accurately predict SCFA production profiles. The analysis confirmed that such intervention significantly promotes butyrate production across samples, with those that presented a comparatively lower butyrate production pre-intervention displaying the largest increase in butyrate production after seeding. Our work highlights the potential of combining GEMs with community design to infer effective microbiome interventions, ultimately leading to improved health outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12283000 | PMC |
http://dx.doi.org/10.1080/19490976.2025.2534673 | DOI Listing |
Transl Anim Sci
August 2025
Department of Animal Science - Texas A&M University, College Station, TX 77843, USA.
This experiment evaluated the effects of supplementing yeast culture ( ) on in situ ruminal degradability, rumen fermentation and microbiota responses of heifers consuming a forage-based diet. Twelve ruminally-cannulated Angus-influenced heifers were ranked by body weight ( 180 ± 4 kg) and assigned to 4 groups of 3 heifers each. Groups were enrolled in a replicated 3 × 3 Latin square design containing 3 periods of 21 d and 14-d washout intervals.
View Article and Find Full Text PDFFront Oral Health
August 2025
Conservative Dentistry and Endodontics, AB Shetty Memorial Institute of Dental Sciences, Nitte (deemed to be) University, Mangalore, India.
Short-chain fatty acids (SCFAs), primarily acetate (C2), propionate (C3), and butyrate (C4), are crucial microbial metabolites formed by the fermentation of dietary fibers by gut microbiota in the colon. These SCFAs, characterized by fewer than six carbon atoms, serve as an essential energy source for colonic epithelial cells and contribute approximately 10% of the body's total energy requirement. They are central to maintaining gut health through multiple mechanisms, including reinforcing intestinal barrier function, exerting anti-inflammatory effects, regulating glucose and lipid metabolism, and influencing host immune responses.
View Article and Find Full Text PDFVet World
July 2025
Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
Background And Aim: Antibiotic resistance has spurred interest in alternative feed additives for poultry. Wood vinegar (WV), a by-product of plant pyrolysis, contains bioactive compounds with antioxidant and antimicrobial properties. This study aimed to evaluate the effects of WV supplementation through drinking water on the cecal microbial population, volatile fatty acid (VFA) concentrations, antioxidant enzyme activity, and apparent ileal nutrient digestibility in broiler chickens.
View Article and Find Full Text PDFJ Anim Sci
September 2025
Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea.
The post-weaning period is stressful for pigs due to changes in their environment and diet. The occurrence of diarrhea at this stage is high. Growth promoters such as antibiotics and zinc oxide (ZnO) have been used to not only reduce post-weaning diarrhea but also improve growth performance of weaning pigs.
View Article and Find Full Text PDFFood Res Int
November 2025
College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China. Electronic address:
Food combinations featuring specific functional components represent one of the effective intervention strategies for alleviating functional gastrointestinal disorders induced by dietary and environmental factors. Honey and aloe vera have both been recognized as natural agents with laxative effects, yet the synergistic effects of their combination in alleviating constipation and the underlying regulatory mechanism remain to be elucidated. This study formulated a honey-aloe paste by employing honey as the primary ingredient compounded with aloe vera gel and investigated its preventive effects on loperamide-induced slow-transit constipation through a comprehensive analysis of gastrointestinal function and intestinal microenvironment.
View Article and Find Full Text PDF