A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Role of viscoelasticity in the buckling-to-folding transition of epithelial monolayers under uni-axial compression. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Epithelial tissues often experience, and respond to, in-plane compression. This occurs during embryonic development and continues throughout adult life, driven by both internal and external forces. Gaining insight into such processes is essential for understanding the mechanisms of tissue morphogenesis, and therefore carries significant implications for developmental biology and regenerative medicine. Although the biological mechanisms associated with epithelial folding have been extensively researched, the physical mechanisms are only beginning to be clarified. One of the primary factors contributing to the relaxation of epithelial monolayers, following externally induced buckling and folding, is the viscoelasticity related to energy storage and dissipation resulting from their compression. Physical mechanisms involve the interplay between physical parameters such as: the epithelial surface tension, viscoelastic Poisson's ratio, bending modulus, internally generated strain and corresponding mechanical stress. The main focus of this review is to point out how interconnected relaxation processes influence epithelial buckling and folding as an integral part of the viscoelasticity, and how cells can regulate the extent of the folding depending on the magnitude of the externally applied compressive stress. This complex phenomenon is elaborated on substrate-devoid epithelial monolayers, considered as a simple model system under in vitro conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cis.2025.103603DOI Listing

Publication Analysis

Top Keywords

epithelial monolayers
12
physical mechanisms
8
buckling folding
8
epithelial
7
role viscoelasticity
4
viscoelasticity buckling-to-folding
4
buckling-to-folding transition
4
transition epithelial
4
monolayers uni-axial
4
uni-axial compression
4

Similar Publications