Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recent advances in large language models (LLMs) enable domain-specific question answering using external knowledge. However, addressing information that is not included in training data remains a challenge, particularly in nuclear medicine, where examination protocols are frequently updated and vary across institutions. In this study, we developed a retrieval-augmented generation (RAG) system using 40 internal manuals from a single Japanese hospital, each corresponding to a different examination in nuclear medicine. These institution-specific documents were segmented and indexed using a hybrid retrieval strategy combining dense vector search (text-embedding-3-small) and sparse keyword search (BM25). GPT-3.5 and GPT-4o were used with the OpenAI application programming interface (API) for response generation. The quality of the generated answers was assessed using a four-point Likert scale by three certified radiological technologists, of which one held an additional certification in nuclear medicine and another held an additional certification in medical physics. Automated evaluation was conducted using RAGAS metrics, including factual correctness and context recall. The GPT-4o model combined with hybrid retrieval achieved the highest performance, as per expert evaluations. Although traditional string-based metrics such as ROUGE and the Levenshtein distance poorly align with human ratings, RAGAS provided consistent rankings across system configurations, despite showing only a modest correlation with manual scores. These findings demonstrate that integrating examination-specific institutional manuals into RAG frameworks can effectively support domain-specific question answering in nuclear medicine. Moreover, LLM-based evaluation methods such as RAGAS may serve as practical tools to complement expert reviews in developing healthcare-oriented artificial intelligence systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12339626PMC
http://dx.doi.org/10.1007/s12194-025-00941-yDOI Listing

Publication Analysis

Top Keywords

nuclear medicine
20
retrieval-augmented generation
8
large language
8
domain-specific question
8
question answering
8
hybrid retrieval
8
held additional
8
additional certification
8
nuclear
5
medicine
5

Similar Publications

Background: Atherosclerosis, a leading cause of cardiovascular disease (CVD) mortality worldwide, is characterized by dysregulated lipid metabolism and unresolved inflammation. Macrophage-derived foam cell formation and apoptosis contribute to plaque formation and vulnerability. Elevated serum galectin-3 (Gal-3) levels are associated with increased CVD risk, and Gal-3 in plaques is strongly associated with macrophages.

View Article and Find Full Text PDF

Background And Objectives: The relationship between insomnia and cognitive decline is poorly understood. We investigated associations between chronic insomnia, longitudinal cognitive outcomes, and brain health in older adults.

Methods: From the population-based Mayo Clinic Study of Aging, we identified cognitively unimpaired older adults with or without a diagnosis of chronic insomnia who underwent annual neuropsychological assessments (z-scored global cognitive scores and cognitive status) and had quantified serial imaging outcomes (amyloid-PET burden [centiloid] and white matter hyperintensities from MRI [WMH, % of intracranial volume]).

View Article and Find Full Text PDF

FDG PET Findings in Rare Brain Sodium Channelopathy Associated with SCN2A Gene Mutation.

Clin Nucl Med

September 2025

Department of Nuclear Medicine & PET/CT, Mahajan Imaging & Labs.

SCN2A gene mutations, which affect the function of the voltage-gated sodium channel NaV1.2, are associated with a spectrum of neurological disorders, including epileptic encephalopathies and autism spectrum disorders. Advanced imaging modalities such as magnetic resonance imaging (MRI) and positron emission tomography (PET) have been instrumental in elucidating the neuroanatomic and functional alterations associated with these mutations.

View Article and Find Full Text PDF

Super Responder of 177Lu-PSMA-617 PSMA Therapy in Patient With End-Stage Renal Disease on Hemodialysis.

Clin Nucl Med

September 2025

Department of Radiology and Nuclear Medicine, Comprehensive Cancer Care and Research Center (SQCCCRC), University Medical City, Muscat, Oman.

PSMA-targeted radioligand therapies with 177Lu-PSMA-617 have shown promising response rates with favorable toxicity in patients with metastasized castration-resistant prostate cancer. We report a case of a 72-year-old man with metastatic castration-resistant prostate cancer having comorbidities of DM, HTN, and end-stage renal disease (ESRD) on regular hemodialysis. The patient received 2 doses of 7.

View Article and Find Full Text PDF