98%
921
2 minutes
20
Lymphoma poses a critical health challenge worldwide, demanding computer aided solutions towards diagnosis, treatment, and research to significantly enhance patient outcomes and combat this pervasive disease. Accurate classification of lymphoma subtypes from Whole Slide Images (WSIs) remains a complex challenge due to morphological similarities among subtypes and the limitations of models that fail to jointly capture local and global features. Traditional diagnostic methods, limited by subjectivity and inconsistencies, highlight the need for advanced, Artificial Intelligence (AI)-driven solutions. This study proposes a hybrid deep learning framework-Hybrid Convolutional and Transformer Network for Lymphoma Classification (HCTN-LC)-designed to enhance the precision and interpretability of lymphoma subtype classification. The model employs a dual-pathway architecture that combines a lightweight SqueezeNet for local feature extraction with a Vision Transformer (ViT) for capturing global context. A Feature Fusion and Enhancement Module (FFEM) is introduced to dynamically integrate features from both pathways. The model is trained and evaluated on a large WSI dataset encompassing three lymphoma subtypes: CLL, FL, and MCL. HCTN-LC achieves superior performance with an overall accuracy of 99.87%, sensitivity of 99.87%, specificity of 99.93%, and AUC of 0.9991, outperforming several recent hybrid models. Grad-CAM visualizations confirm the model's focus on diagnostically relevant regions. The proposed HCTN-LC demonstrates strong potential for real-time and low-resource clinical deployment, offering a robust and interpretable AI tool for hematopathological diagnosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12276327 | PMC |
http://dx.doi.org/10.1038/s41598-025-11277-3 | DOI Listing |
IEEE Trans Neural Netw Learn Syst
September 2025
In industrial scenarios, semantic segmentation of surface defects is vital for identifying, localizing, and delineating defects. However, new defect types constantly emerge with product iterations or process updates. Existing defect segmentation models lack incremental learning capabilities, and direct fine-tuning (FT) often leads to catastrophic forgetting.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
School of Software, Shandong University, Jinan 250101, Shandong, China.
Spatial transcriptomics (ST) reveals gene expression distributions within tissues. Yet, predicting spatial gene expression from histological images still faces the challenges of limited ST data that lack prior knowledge, and insufficient capturing of inter-slice heterogeneity and intra-slice complexity. To tackle these challenges, we introduce FmH2ST, a foundation model-based method for spatial gene expression prediction.
View Article and Find Full Text PDFFront Plant Sci
September 2025
College of Big Data, Yunnan Agricultural University, Kunming, China.
Introduction: Accurate identification of cherry maturity and precise detection of harvestable cherry contours are essential for the development of cherry-picking robots. However, occlusion, lighting variation, and blurriness in natural orchard environments present significant challenges for real-time semantic segmentation.
Methods: To address these issues, we propose a machine vision approach based on the PIDNet real-time semantic segmentation framework.
PLoS One
September 2025
Department of Information Technology, Uppsala University, Uppsala, Sweden.
For effective treatment of bacterial infections, it is essential to identify the species causing the infection as early as possible. Current methods typically require hours of overnight culturing of a bacterial sample and a larger quantity of cells to function effectively. This study uses one-hour phase-contrast time-lapses of single-cell bacterial growth collected from microfluidic chip traps, also known as a "mother machine".
View Article and Find Full Text PDFBrief Bioinform
August 2025
School of Information and Artificial Intelligence, Anhui Agricultural University, 130 Changjiang Road, Shushan District, Hefei, Anhui 230036, China.
Protein-nucleic acid binding sites play a crucial role in biological processes such as gene expression, signal transduction, replication, and transcription. In recent years, with the development of artificial intelligence, protein language models, graph neural networks, and transformer architectures have been adopted to develop both structure-based and sequence-based predictive models. Structure-based methods benefit from the spatial relationship between residues and have shown promising performance.
View Article and Find Full Text PDF