A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Deep learning to identify stroke within 4.5 h using DWI and FLAIR in a prospective multicenter study. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To enhance thrombolysis eligibility in acute ischemic stroke, we developed a deep learning model to estimate stroke onset within 4.5 h using diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) images. Given the variability in human interpretation, our multimodal Res-U-Net (mRUNet) model integrates a modified U-Net and ResNet-34 to classify stroke onset as < 4.5 or ≥ 4.5 h. Using DWI and FLAIR images from patients scanned within 24 h of symptom onset, the modified U-Net generated a DWI-FLAIR mismatch image, while ResNet-34 performed the final classification. mRUNet was evaluated against ResNet-34 and DenseNet-121 on an internal test set (n = 123) and two external test sets: a single-center (n = 468) and a multi-center (n = 1151). mRUNet achieved an area under the receiver operating characteristic curve (AUC-ROC) of 0.903 on the internal set and 0.910 and 0.868 on external sets, significantly outperforming ResNet-34 and DenseNet-121. Our mRUNet model demonstrated robust and consistent classification of the 4.5-h onset-time window across datasets. By leveraging DWI and FLAIR images as a tissue clock, this model may support timely and individualized thrombolysis in patients with unclear stroke onset, such as those with wake-up stroke, in clinical settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12276272PMC
http://dx.doi.org/10.1038/s41598-025-10804-6DOI Listing

Publication Analysis

Top Keywords

deep learning
8
stroke onset
8
learning identify
4
stroke
4
identify stroke
4
stroke 45 h
4
45 h dwi
4
dwi flair
4
flair prospective
4
prospective multicenter
4

Similar Publications