A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Precise virulence inactivation using a CRISPR-associated transposase for combating Enterobacteriaceae gut pathogens. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Targeted gene manipulation in a complex microbial community is an enabling technology for precise microbiome editing. Here we introduce BACTRINS, an in situ microbiome engineering platform designed for efficient and precise genomic insertion of a desired payload and simultaneous knockout of target genes. This system leverages conjugation-mediated delivery of CRISPR-associated transposases to achieve RNA-guided genomic integration, allowing precise insertion of a therapeutic payload while neutralizing pathogen virulence without causing cell death. When applied against an Enterobacteriaceae Shiga toxin-producing pathogen in the gut, this system delivers a CRISPR-associated transposase by bacterial conjugation for site-specific inactivation of the Shiga toxin gene and integration of a nanobody therapeutic payload to disrupt pathogen attachment. A single dose of this therapy results in high-efficiency Shiga gene inactivation and improved survival in a murine infection model of Shiga-producing pathogen. This work establishes a new type of live bacterial therapeutic capable of reducing gut infections by transforming toxigenic pathogens into commensal protectors.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41551-025-01453-1DOI Listing

Publication Analysis

Top Keywords

crispr-associated transposase
8
therapeutic payload
8
precise
4
precise virulence
4
virulence inactivation
4
inactivation crispr-associated
4
transposase combating
4
combating enterobacteriaceae
4
enterobacteriaceae gut
4
gut pathogens
4

Similar Publications