Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Due to challenges such as illumination variability, noise, and visual distortions, machine learning (ML) and deep learning (DL) approaches for skin disease evaluation remain complex. Traditional methods often neglect these issues, leading to skewed predictions and poor performance. This research leverages a diverse dataset and robust image processing techniques to enhance diagnostic accuracy under such demanding conditions. We propose Dermo-Transfer, a novel architecture that combines MobileNet with dense blocks and residual connections to improve skin disease severity classification by addressing problems such as vanishing gradients and overfitting. Our method incorporates multi-scale Retinex, gamma correction, and histogram equalization to enhance image quality and visibility. Furthermore, a quantum support vector machine (QSVM) classifier is employed to improve classification performance, providing confidence scores and effectively handling multi-class problems. The proposed approach significantly enhances diagnostic accuracy and outperforms previous models. Dermo-Transfer not only improves pattern recognition and classification accuracy but also robustly handles varying image quality and lighting conditions. Dermo-Transfer was trained on 77,314 images covering skin conditions such as molluscum, warts, eczema, psoriasis, lichen planus, seborrheic keratoses, atopic dermatitis, melanoma, basal cell carcinoma (BCC), melanocytic nevi (NV), benign keratosis, and other benign tumors. The Dermo-Transfer classification method achieved accuracies of 99 %, 98.5 %, 97.5 %, and 89 % across four datasets, demonstrating its effectiveness and potential utility for clinical diagnostics. Additionally, Dermo-Transfer outperformed SkinLesNet and MobileNet V2-LSTM in terms of classification accuracy. Experimental results also highlight how IoT devices and mobile applications can enhance the computational efficiency and practical deployment of the Dermo-Transfer model.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.slast.2025.100331DOI Listing

Publication Analysis

Top Keywords

deep learning
8
skin disease
8
diagnostic accuracy
8
image quality
8
classification accuracy
8
classification
6
dermo-transfer
6
integrated deep
4
learning framework
4
framework adaptive
4

Similar Publications

Neuroimaging Data Informed Mood and Psychosis Diagnosis Using an Ensemble Deep Multimodal Framework.

Hum Brain Mapp

September 2025

Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA.

Investigating neuroimaging data to identify brain-based markers of mental illnesses has gained significant attention. Nevertheless, these endeavors encounter challenges arising from a reliance on symptoms and self-report assessments in making an initial diagnosis. The absence of biological data to delineate nosological categories hinders the provision of additional neurobiological insights into these disorders.

View Article and Find Full Text PDF

A robust deep learning-driven framework for detecting Parkinson's disease using EEG.

Comput Methods Biomech Biomed Engin

September 2025

Institute of Radio Physics and Electronics, University of Calcutta, Kolkata, India.

Parkinson's disease (PD) is a neurodegenerative condition that impairs motor functions. Accurate and early diagnosis is essential for enhancing well-being and ensuring effective treatment. This study proposes a deep learning-based approach for PD detection using EEG signals.

View Article and Find Full Text PDF

Introduction: Pulmonary embolism (PE) is a life-threatening condition with well-defined management strategies; however, the presence of a clot-in-transit (CIT)-a mobile thrombus within the right heart-introduces a uniquely high-risk scenario associated with a significantly elevated mortality rate. While several therapeutic approaches are available-including anticoagulation, systemic thrombolysis, surgical embolectomy, and catheter-directed therapies-there is no established consensus on a superior treatment modality. Catheter-based mechanical thrombectomy has emerged as a promising, minimally invasive alternative that mitigates the bleeding risks of systemic thrombolysis and the invasiveness of surgery.

View Article and Find Full Text PDF

Artificial intelligence (AI) is a technique or tool to simulate or emulate human "intelligence." Precision medicine or precision histology refers to the subpopulation-tailored diagnosis, therapeutics, and management of diseases with its sociocultural, behavioral, genomic, transcriptomic, and pharmaco-omic implications. The modern decade experiences a quantum leap in AI-based models in various aspects of daily routines including practice of precision medicine and histology.

View Article and Find Full Text PDF

Background: In clinical practice, digital subtraction angiography (DSA) often suffers from misregistration artifact resulting from voluntary, respiratory, and cardiac motion during acquisition. Most prior efforts to register the background DSA mask to subsequent postcontrast images rely on key point registration using iterative optimization, which has limited real-time application.

Purpose: Leveraging state-of-the-art, unsupervised deep learning, we aim to develop a fast, deformable registration model to substantially reduce DSA misregistration in craniocervical angiography without compromising spatial resolution or introducing new artifacts.

View Article and Find Full Text PDF